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Figure7. Proposed model of Notch1 in requlating adult neurogenesis under basal conditions and after physical activity. Without Notch1, self-renewal and expansion of nestin-expressing cells
is disrupted and the net number of adult-generated dentate qyrus neurons is deaeased. Physical activity increases adult-generated neurons in WT and Notch1 iKO mice by increasing neuroblast
proliferation. However, physical activity does not rescue Type-1 NSC or TAP number in Notch1 iKO mice.
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Figure 1 | Telomerase and telomere components involved in human monogenic telomere syndromes. Components
for which mutations have been identified in telomere syndromes are indicated in bold type and shaded in blue. Shelterin
complex components are made up of six component proteins — telomere repeat-binding factor 1 (TRF1), TRFZ,
repressorf/activator protein 1 (RAP1), TRF1-interacting nuclear protein 2 (TINZ), TIN2-interacting protein 1 (TPP1) and
protection of telomeres 1 (POT1)— which are essential for telomere protection and for regulating telomere elongation.
The telomerase enzyme complex is comprised of TERT (the reverse transcriptase) and TR (the essential RNA component
that contains a template for telomere repeat addition). TR contains a 3' H/ACA box motif that binds the dyskerin protein,
which is part of a larger dyskerin complex that also consists of NHP2, NOP10 and GAR1. Note that for simplicity, one
dyskerin complex is shown per TR molecule, although two copies are now thought to bind each TR. Telomerase Cajal
body protein 1 (TCAB1) binds a Cajal body localization motif in TR and has a role in TR trafficking and biogenesis. In the
Cajal body, TR and TERT assemble into a functional holeenzyme complex. The CST complex has three components —
conserved telomere protection component 1 ({CTC1), suppressor of cde thirteen 1{STN1) and telomeric pathway

with STN1 {TEN1) —which are thought te function in part in telomere lagging-strand synthesis. Figure adapted, with
permission, from REF. 13 @ (2009) Annual Reviews.
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Table 1| Disease spectrum, frequency of gene mutations and mechanism of telomere shortening in telomere syndromes

Gene

TERT;
TR

DKC1

TINF2

NOP10
NHPZ
TCAB1
CTC1

First diagnosis

Familial IPF

Sporadic IPF

Aplastic anaemia

Autosomal dominant dyskeratosis congenita
Familial MDS-AML

De novo dyskeratosis congenita

X-linked recessive dyskeratosis congenita
Hoyeraal-Hreiderasson syndrome

De novo dyskeratosis congenita
Autosomal-dominant dyskeratosis congenita
Hoyeraal-Hreiderasson syndrome

Revesz syndrome

Autosomal-recessive dyskeratosis congenita
Autosomal-recessive dyskeratosis congenita
Autosomal-recessive dyskeratosis congenita
Coats plus syndrome

Autosomal-recessive dyskeratosis congenita

Mutation
frequency (%)

8-15
1-3
3-5
10*

20

?
15-25%

15-25*
Rare
Rare

Rare

Ed
3

1

g0
?

Mechanism of telomere shortening

* Partial loss-of-function
* Haploinsufficiency

* Partial loss-of-function
* Decreased TR stability and biogenesis

= Not completely understood
* Probably dominant-negative mutations

Presumed loss of telomerase function
Presumed loss of telomerase function
Impaired TR trafficking; loss-of-function
Loss-of-function

Refs

36, 38, 39,41,
54, 56, 68, 13,
74,717,111,
116

0,11,124,125

62,126,127
61
B0
63
22,64, 66, 67

*Refers to frequency of total dyskeratosis congenita patients. *Only two cases have been reported for each of these genes in the literature te date. AML, acute
myeloid leukaemia; CTC1, conserved telomere protection component 1; DKC1, dyskeratosis congenita 1; IPF, idiopathic pulmenary fibrosis; MDS, myelodysplastic

syndrome; TCAB1, telomerase Cajal body protein 1; TINFZ, TRF1-interacting nuclear factor 2.



The Hallmarks of Aging Cell 153, June 6, 2013 ©2013 Elsevier Inc.
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Figure 1. The Hallmarks of Aging
The scheme enumerates the nine hallmarks described in this Review: genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, de-
regulated nutrient sensing. mitochondrial dysfunction, cellular senescence. stem cell exhausticn, and altered intercellular communication.
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Telomere syndrome manifestations that overlap with buman age-related phenotypes
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Variation in neural
development as a result of
exposure to
institutionalization early in
childhood

Sheridan MA, Fox MA, Zeanah CH, McLaughlin
KA, Melson CA

Laboratories of Cognitive Meuroscience, Division of
Developrmental Meadicine, Boston Children’s Hospital,
Boston, MA 02115,

We used structural MRI and EEG to examine brain
structure and function in typically developing
children in Remania {n = 20), children exposed
to institutional rearing (n = 29), and children
previously exposed to institutional rearing but
then randomized to a high-quality foster care
intervention (n = 25). In so doing, we provide a
unigue evaluation of whether placement in an
improved environment mitigates the effects of
institutional rearing on neural structure, using
data from the only existing randemized
controlled trial of foster care for institutionalized
children. Children enrolled in the Bucharest Early
Intervention Project underwent a T1-weighted
MRI protocol. Children with histories of
institutional rearing had significantly smaller
cortical gray matter volume than never-
institutionalized children. Cortical white matter
was mo different for children placed in foster care
than never-institutionalized children but was
significantly smaller for children not randomized
to foster care. We were also able to explain
previously reported reductions in EEC a-power
amang institutionally reared children compared
with children raised in families using these MRI
data. As hypothesized, the association between
institutionalization and EEC m-power was
partially mediated by cortical white matter
volume for children not randomized to foster
care. The increase in white matter among
children randomized to an improved rearing
environment relative to children who remained in
institutional care suggests the potential for
developmental "catch up” in white matter
growth, even following extreme environmental
deprivation.

Maternal separation
produces lasting changes in
cortisol and behavior in
rhesus monkeys

Feng X, Wang L, Yang 5, Qin D, Wang J, LiC, Lw L,
Ma¥, Hu X

State Key Laboratory of Brain and Cognitive Science,
Kunming Institute of Zoology, Chinese Academy of
Sciences, Kunming, Yunnan 650223, People’s Republic
of China.

Maternal separation (MS), which can lead to
hypothalamic pituitary adrenal axis dysfunction
and behavioral abnormalities in rhesus monkeys,
is frequently used to model early adversity.
‘Whether this deleterious effect on monkeys is
reversible by later experience is unknown. In this
study, we assessed the basal hair cortisol in
rhesus monkeys after 1.5 and 3 y of normal
social life following an early separation. These
results showed that peer-reared monkeys had
significantly lower basal hair cortisol levels than
the mother-reared monkeys at both years
examined. The plasma cortisol was assessed in
the monkeys after 1.5 v of normal social life, and
the results indicated that the peak in the peer-
reared cortisol response to acute Stressors was
substantially delaved. In addition, after 3 v of
normal social life, abnormal behavioral patterns
were identified in the peer-reared monkeys.
They showed decreases in locomotion and
initiated sitting together, as well as increases in
sterectypical behaviors compared with the
mother-reared monkeys. These results
demeonstrate that the deletericus effects of M5
on rhesus monkeys cannot be compensated by a
later normal social life, suggesting that the
effects of M5 are long-lasting and that the
maternal-separated rhesus monkeys are a good
animal model to study early adversity and to
investigate the development of psychiatric
disorders induced by exposure to early adversity.

Proc Natl Acad Sci USA
2012 vol. 109 (32) pp. 12027-32

Proc Matl Acad Sci USA
2011 vol. 108 (34) pp. 14312-7

Stress exposure in
intrauterine life is
associated with shorter
telomere length in young
adulthood

Entringer 5, Epel ES, Kumsta R, Lin J, Hellhammer
DH, Blackburn EH, Wast 5, Wadhwa PD

Department of Pediatrics, University of Califarnia,
Irvine, CA 92697

Leukocyte telomere length (LTL) is a predictor of
age-related disease onset and mortality. The
association in adults of psychosocial stress or
stress biomarkers with LTL suggests telomere
biclogy may represent a possible underlying
mechanism linking stress and health cutcomes.
It is, howewver, unknown whether stress exposure
in intrauterine life can produce variations in LTL,
thereby potentially setting up a long-term
trajectory for disease susceptibility. We,
therefore, as a first step, tested the hypothesis
that stress exposure during intrauterine life is
associated with shorter telomeres in adult life
after accounting for the effects of other factors
on LTL. LTL was assessed in 94 healthy young
adults. Forty-five subjects were offspring of
maothers who had experienced a severe stressor
in the index pregnancy (prenatal stress group;
PSG). and 49 subjects were offspring of mothers
who had a healthy, uneventful index pregnancy
[comparison group, CC). Prenatal stress
exposure was a significant predictor of
subsequent adult telomere length in the
offspring (178-bp difference between prenatal
stress and CG; d = D.41 5D units; P < 0.05). The
effect was substantially unchanged after
adjusting for potential confounders (subject
characteristics, birth weight percentile, and
early-life and concurrent stress level), and was
more prongunced in women {295-bp difference;
d = 0.68 5D units; P < 0.01). Te the best of our
knowledge, this study provides the first evidence
in humans of an association between prenatal
stress exposure and subseguent shorter
telomere length. This observation may help shed
light on an important biological pathway
underlying the developmental origins of adult
health and disease risk.

Proc Natl Acad 5ci USA
2011 vol. 108 {33) pp. E513-8
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Dynamics of Hippocampal Neurogenesis (Radio)active Neurogenesis
in Adult Humans in the Human Hippocampus
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B Exercise improves prepulse inhibition
response in Polyl:C animals

Fig. 1. Behavioral improvements in Polyl:C offspring after physical activity. We a AD -
used pre-pulse inhibition of the startle response (PPl at postnatal day 60 to verify # [ cr
the schizophrenic phenotype of the mice subjected to Polyl:C in utero. Moreover we - 60 Il Foly:C
used the open field test to measure differences in general motor behavior between E Il CTRRUN
the groups. Both tests revealed a rather hypoactive behavior of the Polyl:C group B 2 PolykC RUN
compared to CTR. (A) The overall response to the startle of 100 dB was increased in k=1
the Polyl:C group. The voluntary wheel running decreased the startle response in é 20+
both groups bringing the Polyl:C RUN group toward CTR level and thus restoring the 5
phenotype. (B) The same could be seen in the pre-pulse inhibition. The Polyl:C € ol
animals showed only a 30% inhibition of the startle compared to CTR with 50% of ® & A 2 &
inhibition. Exercise increased the inhibition of Polyl:C EUN to 50% in average thus pre-pulse (db)
restoring the phenotype in this measure as well. Mo differences were seen between
CTR and CTR RUMN. [C) In the open field test both Poly[:C and CTR RUN showed an C Exercise restores rearing frequency
increase in head turns paralleled by a decrease in the total distance mowved of Polyl:C animals
compared to CTR Increased head turms could be interpreted as either greater 50 =
interest in the environment or higher level of distractibility leading to the CJctr
conclusion that these parameters alope are pot sufficient in monitoring motor 40 I FolyiC
behavior. When we look at the frequency of rearing we do see an approximately 204 Il CTRRUN
50% increase in the Poly[:C group compared to all other groups. Exercise brought [ Polyi.C RUN
the rearing frequency back to CTR level in the Polyl:C RUN group. Since running had 204
no effect on the CTR animals, rearing frequency in addition to head turns
demonstrate a racther hypoactive phenotype in the Polyl:C group. 104

D-




Physical exercise increases adult neurogenesis and telomerase activity,

and improves behavioral deficits in a mouse model of schizophrenia Bram, Deavionand [y s (3011 011960

Susanne A. Wolf**, Andre Melnik?, Gerd Kempermann <

A @

NsC  Amplying

&

Type-1 Tmnsendy Nsuroblas: mmature

naLIngn

PI‘IZIHEHII:-'_? ’

Maturation

Iatire
N&ELINTn

A

Wild Type

Expression of early neuronal markers in
the dentate gyrus of the hippocampus

in utero Polyl:C decreases neuronal progenitor Cc in utero Polyl:C slows down neuronal maturation in the adult hippocampus
proliferation in the adult hippocampus 1004 [ BrdUMNestin
: 2 7 = R £ B BrdUDCX
2 :LJ CTR g 3 B FoiyiC 3
8 600+ ‘Il PolylC - 200 gi § Bl CTRRUN = [ BrdUMNeuN
3 § I CTRRUN g g [ FoyiCRUN & [ BrdUlother
2 H 1 Polyl:lC RUN L 150 = " < =04
= 4004 H =y [ 500 2
- g 5 s
2 100 o© E [=]
® . 2 =
g 2004 g
< & N ; + =
&
I * g ¢ ¢ & &
& ¢



Physical exercise increases adult neurogenesis and telomerase activity,
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Adult neurogenesis and
functional plasticity in
neuronal circuits
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neural stem cells
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Telomere shortening in 1 Neurosci

neural stem cells disrupts 2009 vol. 29 {46) pp. 14394-407
neuronal differentiation and

neuritogenesis

Ferron SR, Margqués-Torrejon MA, Mira H, Flores |,
Taylor K, Blasco MA, Farifias |

A 2 months 12 months B OB (granular layer)
ag_q_{mnnlhsij 2 12
LRC 439+66 144 +1.8"
%LRC/CR 51+086 16+02"

O

fetal early postnatal adulthood

Cad
o

mlert expression
(relative to p-actin)
o

0 ' ' "
© P QP PP
age (days)
neurospheres
__age (months) 2 12

mTert expression (a.u) 2.2+0.4 1.3+03"
telomere length (a.u) 67.9+32 525+34"




	Cours 4-11-2013

