

Surface mass balance (SMB) and global warming

Two major components with opposite response

- Surface mass balance = Precipitation Ablation
- Ablation rate (melting) increases with higher temperatures
- Precipitation rate (snow) is likely to increase because it is linked to atmospheric moisture content.
- But if really warm, rain replaces snow.
- Response to warming: the net effect on SMB depends on regions
 - Greenland : centre governed by precipitation, edges by ablation
 - Antarctica : almost no ablation at present $\, \rightarrow \,$ SMB increase
- Possible changes in atmospheric circulation
- Polar amplification

Dynamical processes affecting the Greenland ice sheet

Why do Greenland glaciers accelerate

- Calving
 - Flow line model applied to 4 major glaciers → 40-85 mm sea level contribution by 2100. (*Nick et al. Nature 2013*)
 - Implemented as a forcing in a 3D model
 → 7-15 mm (Goelzer et al. J. Glac, in press)
 - Contribution stops when the glaciers retreat enough to be no longer connected to the ocean

Basal lubrication

- Due to runoff water reaching bedrock through crevasses and moulins.
- Small contribution 1.4 mm (Goezler et al, J. Glac, in press)

Observation of changes in the Antarctic ice sheet

- Some thickening in East Antarctica and Peninsula
 - Attributed to an Increase in precipitation rate.
 - Could be impacted by the decadal variability.
 - Shut down of ice stream C
- Important thinning in some drainage basins.
 - Especially Amundsen sea sector and is accelrating there
 - Totten glacier in EAIS

Flament-Rémy, J. Glac, 2012. Rate of surface elevation change (m/yr) 2002-2010 (Envisat)

Elevation feedback should be small for the next 100 years

- · Possible instability : Thinning of the ice sheet enhances ablation
- Experiment in the framework of ice2sea
 - ► 2 AO-GCM A1B scenario -> MAR (regional atm. Model) → 6 ice sheet models
 - Surface elevation feedback parametrized (statistical approach)
 - Contribution to sea level due to SMB changes ~ 55-70 mm in 2100
 - feedback < 10 mm

But the instability is not ruled out on longer time scale or more dramatic scenario

Summary for the Greenland ice sheet

- Observation 2003-2009 (Hanna et al. Nature 2013)
 - ► Loss -238±29 Gt/yr (GRACE) and -260±53 Gt/yr (mass budget). ~ 0.7 mm/yr
 - Seems to be accelerating
- For the future: largest uncertainty comes from the spread among global climate models and from emission scenario
 - A1B → 55-70 mm sea level rise by 2100 ((in the ice2sea study)
 - But the surface temperature perturbation is about twice as large for RCP8.5 compared to A1B
- · Amplifications exists but calving impact remains difficult to predict
 - Calving 7-85 mm sea level rise by 2100
 - Lubrication 1.4 mm by 2100
 - Elevation feedback ~ 10 mm by 2100

Marine Ice Sheet instability : grounding line migration

 Strongly suspected for PIG (Pine Island Glacier)

- Topographical instability
 - Where the bedrock is deeper inland , modulated by 3D effect
 - In the unstable region, perturbation in any of the terms of force balance may result in grounding line migration backward or forward.

Can be triggered by ice shelf melting or collapse

- Ocean : due to warming ocean or change in circulation
- Atmosphere : ponding of surface melt water opens crevasses

PIG grounding line simulation

• Retreat is initiated by an enhanced melting below the ice shelf (*Favier et al. submitted*)

PIG grounding line simulation

• Retreat is initiated by an enhanced melting below the ice shelf (Favier et al. submitted)

PIG grounding line simulation

• Retreat is initiated by an enhanced melting below the ice shelf (Favier et al. submitted)

Conclusions on grounding line migration

- · PIG is likely to continue retreating even if the basal melting stops
- Other regions that could be affected by MISI. (Ritz et al. In prep.)
- · Here grounding line retreat is forced according to considerations on :
 - topography
 - glaciology
 - Ocean and atmosph. simulations
 - Ensemble method (1000 runs)
- Keep only those that fit PIG
- observations (Shepherd et al. 2012)Probability that a point is lowered by
- more than 100 m in 2200
- Thwaites glacier ???

Global estimation in 2100 including surface mass balance change -8 + 32 mm of sea level in 2100 (Payne et all PNAS, in press)

PIG grounding line simulation

• Retreat is initiated by an enhanced melting below the ice shelf (*Favier et al. submitted*)

Conclusions : Present and future of Greenland and Antarctica

- Recent assessment has reduced uncertainty on present mass balance observations
 - reconciled estimations
 - Greenland: still loosing mass at an increased pace.
 Antarctica: half of previously estimated.

- Models have improved since IPCC AR4 (grid, mechanics, methods)
 - For the Greenland ice sheet, the major uncertainty comes from the spread of climate models. But modelling calving is still difficult.
 - In Antarctica, enhanced precipitation should partly compensate accelerated dynamics
 - Marine Ice Sheet instability seems active in PIG. Thwaites glacier ?

