Iron pnictides superconductors (discovered in march 08) *View of the electronic structure with photoemission (ARPES)*

Véronique Brouet Laboratoire de Physique des Solides d'Orsay

Outline

- Why study these systems ?

=> High temperature superconductivity (up to 56K) => Exotic superconducting pairing, possibly involving magnetic fluctuations.

- A complicated electronic structure, unusual in the context of correlated systems

=> 5 Fe bands near the Fermi level, giving rise to small hole and electron pockets

=> Angle-resolved photoemission allows to map the dispersion of the different bands

ARPES study of superconducting and magnetic properties
 => Different superconducting gaps for the different bands
 => Reconstruction of the Fermi Surface in the magnetic state, compared with nesting properties of the Fermi Surface.

The discovery of iron pnictides superconductors

=> Origin of superconductivity ? Relationship with magnetism ?
=> Relationship with other high temperature superconductors, like cuprates ?

Origin of the superconducting pairing ?

• Electron-phonon coupling seems to be too weak (λ =0.2) to induce superconductivity at such high temperatures

• Could superconductivity be mediated by spin fluctuations ?

Proposal : Unconventional superconductivity mediated by spin fluctuations. => extended s-wave pairing with a sign reversal between hole and electrons sheets.

I. I. Mazin, D. J. Singh, M. D. Johannes and M. H. Du, PRL 2008

The undoped compound is a compensated semi-metal with small hole and electron FS pockets

The main orbitals at the Fermi level : Fe d_{XZ} and d_{YZ}

5 Fe 3d orbitals filled by 6 electrons

Y. Ran et al., Phys. Rev. B 79, 014505 (2009)

The undoped compound is a compensated semi-metal with small hole and electron FS pockets

Energy (eV)

The main orbitals at the Fermi

Y. Ran et al., Phys. Rev. B 79, 014505 (2009)

The undoped compound is a compensated semi-metal with small hole and electron FS pockets

=> Good nesting between hole and electron pockets

Origin of the superconducting pairing ?

• Electron-phonon coupling seems to be too weak (λ =0.2) to induce superconductivity at such high temperatures

• Could superconductivity be mediated by spin fluctuations ?

Proposal : Unconventional superconductivity mediated by spin fluctuations. => extended s-wave pairing with a sign reversal between hole and electrons sheets.

I. I. Mazin, D. J. Singh, M. D. Johannes and M. H. Du, PRL 2008

Magnetic transition

Rotter et al., PRL 2008

De la Cruz et al., Nature 2008

The magnetic phase is metallic with rather small magnetic moments (0.3 - 1 μ_B) => this suggests a Spin Density Wave picture

Magnetism : localized or itinerant ?

Magnetic structure usually observed in iron pnictides

Consistent with nesting vector OR superexchange interactions (2nd neighbors)

Magnetic structure observed in FeSe family NOT consistent with Fermi Surface nesting

Problems with itinerant approaches

• Systematic overestimation of the magnetic moment by ab initio calculations

• Also wrong estimation of the As position

Could the moments be much larger in fluctuating domains ?

cf Mazin and Johannes, Nature Physics 2009

The superconducting temperature seems to scale with the As height !

Mizuguchi et al., cond-mat 2010

View of the electronic structure with ARPES

- How many hole and electron pockets ?

- Are they well nested ?

What is the strength of electronic correlations ?Are there analogies with cuprates ?

Angle-resolved photoemission

Hole pockets in $Ba(Fe_{0.92}Co_{0.08})As_2$

$$E_{kin} = h \nu - W - |E_B|$$
$$\hbar \mathbf{k}_{\parallel} = \sqrt{2mE_{kin}} \sin \theta$$

Angle-resolved photoemission

CASSIOPEE beamline, SOLEIL synchrotron

Photons from : Synch He lan Laser

Synchrotrons : 10-100eV He lamp : 21 eV Laser : 6-7eV

Angle-resolved photoemission

Hole pockets in $Ba(Fe_{0.92}Co_{0.08})As_2$

$$E_{kin} = h v - W - |E_B|$$

$$\hbar \mathbf{k}_{\parallel} = \sqrt{2mE_{kin}} \sin \theta$$

Some aspects of the photoemission theory

Surface : Work function W, information on k_{\perp} lost

$$I(k,\omega) = \sum_{i,f} \frac{2\pi}{\hbar} \left| \left\langle \psi_{f}^{N} \middle| \frac{e}{mc} \overrightarrow{A} \cdot \overrightarrow{p} \middle| \psi_{i}^{N} \right\rangle \right|^{2} \delta(E_{f}^{N} - E_{i}^{N} - h\nu)$$

Sudden approximation :

$$\boldsymbol{\psi}_f^N = \boldsymbol{\varphi}_f^k \boldsymbol{\psi}_f^{N-1}$$

$$\left\langle \varphi_{f}^{k} \middle| \frac{e}{mc} \overrightarrow{A} \overrightarrow{P} \middle| \varphi_{i}^{k} \right\rangle \left\langle \psi_{f}^{N-1} \middle| c_{k} \middle| \psi_{i}^{N} \right\rangle$$

Matrix element describing the photoemission process. May depend on *A* and hv.

Spectral function A(k,ω) Interaction effects

Measuring interaction effects

=> Renormalization of the dispersion (« higher effective mass »)

=> Finite linewidth (measurable for a 2D system)

=> Reduced quasiparticle weight Z, transfer of spectral weight to incoherent structures

Estimating the strength of electronic correlations

LDA calculation for BaFe₂As₂ (*M. Aichhorn et al.*)

Estimating the strength of electronic correlations

LaFeOP - D.H. Lu, Z.-X. Shen et al., Nature 2008

=> Band structure renormalized by factor 2

This renormalization agrees well with calculations including correlation effects

LaFeOAs - M. Aichhorn et al., PRB 2009

• The degree of correlations may change significantly between different families => $m^*/m = 2$ to 4

• Different behaviors for bands with different orbital symmetries

Probing the symmetry of orbitals with ARPES

 $\langle \phi_f^{\mathbf{k}} | \mathbf{A} \cdot \mathbf{p} | \phi_i^{\mathbf{k}} \rangle \begin{cases} \phi_i^{\mathbf{k}} \text{ even } \langle + | + | + \rangle \Rightarrow \mathbf{A} \text{ even} \\ \phi_i^{\mathbf{k}} \text{ odd } \langle + | - | - \rangle \Rightarrow \mathbf{A} \text{ odd.} \end{cases}$

A. Damascelli et al., Rev. Mod. Physics 2003

Horizontal polarization => even orbitals Vertical polarization => odd orbitals

Probing the symmetry of orbitals with ARPES

Zhang, Feng et al. cond-mat 2009

 => The inner pocket is doubly degenerated, with odd and even symmetries (probably d_{XZ} and d_{YZ}).
 => The outer pocket is mainly even : could have strong d_z² character. S. Thirupathaia *et al.*, B. Mansart *et al.*

$\begin{array}{c} \text{Correlations may enhance the contribution} \\ \text{ of the } d_z^2 \text{ band} \end{array}$

Gutzwiller density functional calculations (Ba_{0.6}K_{0.4}Fe₂As₂)

Wang et al., cond-mat/0903.1385

Probing 3D effects in ARPES

3D effects on the hole pockets

There are strong variations of the hole pockets with photon energy

=> Significant 3D effects in this family (unlike for example in cuprates)

Evolution with electron doping : Ba(Fe_{1-x}Co_x)₂As₂

Evolution with electron doping : $Ba(Fe_{1-x}Co_x)_{2}As_{2}$

-0.15

-0.20

-1.0

-0.5

Vf=0.35 - Kf=-0.1

0.0

0.5

-0.15

-0.20

-0.25

-1.0 -0.8 -0.6 -0.4

1.0

92eV - T13 - Vf=0.55 - Kf=0.48

0.0 0.2

04

-0.2

V. Brouet et al., PRB 2009

Exploring the magnetic and superconducting properties with ARPES

=> Value and symmetry of the superconducting gap on the different bands ? => Role of nesting in the formation of the magnetic state ?

First determination of superconducting gaps in Ba_{0.6}K_{0.4}Fe₂As₂

H. Ding et al. Europhysics Letters 83, 47001 (2008)

=> Nearly isotropic gaps

=> Same values on the hole and electron bands exhibiting the best nestings, smaller value on the other hole band

Is « nesting » important for superconductivity ?

Asymmetry between hole and electron sides, as well as the disappearance of superconductivity when the hole band is filled support the importance of interband transitions

However, in LiFeAs, nesting is completely lost, which does not weaken much superconductivity $(T_c=18K)$ Borisenko, cond-mat 2010

Is « nesting » important for magnetism ?

BaFe₂As₂

Fermi Surface below T_N (150K)

Only small parts of the FS are remaining : « droplets » FS

M.F. Jensen, in preparation

Is « nesting » important for magnetism ?

BaFe₂As₂

-1.0

-1.0

-0.5

0.0

0.5

1.0

Fermi Surface below T_N (150K)

Only small parts of the FS are remaining : « droplets » FS

M.F. Jensen, in preparation

More than a simple folding

Reconstruction of the electron pockets (splitting)

See also : L.X Yang et al., PRL **102**, 107002 (2009) M. Yi et al., PRB **80**, 174510 (2009) S. de Jong et al., cond-mat/0912.3434

Splitting due to :

- local moments ?
- inequivalency between X and
 - Y (orthorhombicity) ?
- k_z dispersion ?

Conclusions

- Renormalization of the LDA band structure by a factor 2-3
 => moderately correlated systems
- Three hole bands and two electron pockets => one hole band probably with d_z^2 character
- Significant 3D dispersion
- Rigid-band evolution with doping unlike in other families of superconductors like $Ba(Fe,Ru)_2As_2$
- Different superconducting gaps for the different bands
- Significant reconstruction of the electronic structure in the magnetic state.

Collaborators

Maria Fuglsang Jensen, Marino Marsi, Barbara Mansart LPS Orsay

Amina Taleb-Ibrahimi, Patrick Lefèvre, François Bertran, Alessandro Nicolaou *CASSIOPEE beamline, SOLEIL*

Dorothée Colson, Anne Forget, Florence Rullier-Albenque SPEC, CEA-Saclay