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Cuprates supraconducteurs :
ou en est-on ?

Cycle 2010-2011
Antoine Georges Cours 2&3 — 9&16/11/2010




Cours 3 - 16/11/2010

Cours: Phenomeénologie des cuprates
supraconducteurs (suite) :

pseudogap, dichotomie nceuds/antinceuds

* 15h30: Christophe BERTHOD, Université

de Geneve, Spectroscopie STM dans les
cuprates

 16h45: Kamran BEHNIA, ESPCI, Transport

d’entropie dans les cuprates supraconducteurs
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Cuprates: “Generic” phase diagram



Different materials must be considered to explore the whole
phase diagram... the example of ARPES
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1. Parent compounds:
Antiferromagnetic Insulators

LSCO: T ~325 K
YBCO4 Ty ~ 500 K
NCCO (e-doped) T ~ 250 K




Fits to the spin-wave spectrum of La,CuO,

* Early (1989-1991) neutron experiments compared to
theoretical spin-wave spectra yielded estimates of the
Intra-plane nearest neighbor exchange
J~116-136 meV ~ 1400 — 1550 K
(and weak inter-plane exchange ~ 0.002 meV)

Ordered moment: 0.6 yg (Free Cu?*: 1.1ug) = Importance of
quantum fluctuations

* More recent high-precision neutron experiments point,
additionally, at the importance of a 4-site exchange coupling
cf. Coldea et al. PRL 86, 5377 (2001)

« This was anticipated from photon spectroscopies, e.g.
Raman scattering (e.g. Sugai et al. PRB 42, 1045 (1990))
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FIG. 3. (A) Dispersion relation along high symmetry direc-
tions in the 2D Brillouin zone, see inset (C), at 7 = 10 K (open
symbols) and 295 K (solid symbols). Squares were obtained
for E; = 250 meV, circles for E; = 600 meV, and triangles
for E; = 750 meV. Points extracted from constant-£(-Q) cuts
have a vertical (horizontal) bar to indicate the E((Q) integration
band. Solid (dashed) line 1s a fit to the spin-wave dispersion re-
lation at 7" = 10 K (295 K) as discussed in the text. (B) Wave-
vector dependence of the spin-wave intensity at 7= 295 K
compared with predictions of linear spin-wave theory shown by
the solid line. The absolute intensities [11] yield a wave-vector-
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Reasonable agreement with estimates
from 3-band p-d model

Perturbative estimate to

lowest g B0t (U Apa) (U2 +U Apa + AZ)

i C - — T O.dir — T3 AT
ordersin t: A )| - U3 AT,

With tpd=1 3eV,A=36¢eV, U=8 eV
this would yield J ~ 350 meV, too large by | U=8eV,A =3.6eV I

|
c---- 2nd prd
a factor 2-3 ! e = 3r0 brder

: : ——  4th drder
But more precise estimates

with cluster-cell method work much better,
Also for 4-spin exchange JE

Muller-Hartmann and Reichl
EPJB 28, 173 (2002)




2. Effect of doping on magnetism:
- Destruction of long-range order

- Survival of magnetic correlations




Hole motion is detrimental to AF ordering...
and AF ordering impedes the motion of holes

Note: Antiferromagnetism is more robust for electron-doped, see upcoming
lectures




L ap-x Stx CuOg Phase Diagram
|

- Rapid destruction of long-range order upon
hole-doping ( at x ~ 2% in LSCO)
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FIG. 34. Magnetic correlation length vs strontium concentra-
tion x. The curve represents the average separation between

the holes introduced by doping. From Thurston, Birgeneau,
Kastner et al. (1989).




An intriguing observation: inverse hole mobility tracks AF
correlation length ? [Ando et al. PRL 87, 017001, 2001]
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3. A broad overview of the
different regimes
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YBCO Cooper et al
Optica| PRB 47, 8233 (1993)

conductivity
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FIG. 10. In-plane (E L c) optical conductivity o{w) obtained
from a Kramers-Kronig analysis of the reflectivity data for
various compositions of YBa,;CuiOg,,. Adapted from Cooper,
Reznik, er al., 1993,
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- Gradual emergence of a Drude-like
peak upon doping

- Large transfer of spectral weights
(as x or T are varied)

- ‘'mid infra-red’ contribution

How ‘unconventional’ is this ?
LSCO Uchida et al What is the number of carriers ?
PRB 43, 7942 (1991) (underdoped: Np, 4e ~ X)




Optical spectral weight vs. doping
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Figure 3 Comparison of measured and calculated optical spectral welght. Filled
symbols: spectral weight obtained by integrating experimental conductivity up to
Comanac et al. 0.8 eV from references given. Open symbols: theoretically calculated spectral
Nature Physics, 2008 weight, integrated up to W/4. For U=0.85U,, and U = 0.9U,,, the band-theory
estimate W= 3 eV is used to convert the calculation to physical units; for
U=1.02U,,, the value W= 2.25 eV which reproduces the insulating gap is used.




Compare with more conventional’ (3D)
doped (d') Mott insulator: La,_Sr, TiO,
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VERY SIMILAR
BEHAVIOR

(at least for the
main features)




You should be surprised, if you are
a band-theorist (independent electrons):

» Band-theory yields a 'large’ Fermi surface
in the paramagnetic phase for the doped

system Apg S l-x

hole-doped w/ x holes: A—BZ 5

""Luttinger volume™ (counting electron, 1e filled states)

- Which NAIVELY would yield 1-x electron
charge carriers (1+x hole carriers) per
copper site




Can we understand this from established
theories of doped Mott insulators ?... YES !

Brinkman-Rice/Gutzwiller/Slave-bosons/DMFT,
cf 2009-2010 lectures

Low-energy quasiparticles in a hole-doped Mott insulators in a phase
without broken symmetry has:

- A large Fermi surface w/ Luttinger volume (1-x)/2

- Drude weight in optical conductivity Ny ~ x

- SMALL quasiparticle spectral weight Z ~ x , uniform on FS
-This defines a quasiparticle coherence scale

- Effective mass: o 1 lei ~cEp ~ xt
m J/t+=x

- Fermi-liquid resistivity at low-T. [EeSEV, <—




This works for Titanates ! Tokura et al.

FIG. 3. The filling (x) dependence of the T linear coefficient PRL, 1993
of low-temperature specific heat (y, closed circles) and nearly
temperature-independent spin susceptibility (y) at 300 K (open
circles). In the upper part, the Wilson ratio, y/y normalized by
3up/n*k§, is plotted vs x.
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FIG. 4. The T? coefficient of resistivity (4) plotted vs the
square of the T linear coefficient of low-temperature specific
heat (¥2?) for the metallic Sri-,La,TiOs near the metal-
nonmetal phase boundary (x = 0.7). The notation x =1%* indi-

cates the nominally x=1 sample which is barely metallic
perhaps due to a slight amount (ca. 2%) of La deficiencies.

0 Titanates/transport

T2 (10* K?)
FIG. 1. Temperature (7) dependence of resistivity (p) in

Sri—xLa,TiOs. p is plotted vs T2 The inset shows p vs T plots
in the nonmetallic x =1 (LaTiO3) and metallic x =0.95 sam-

ples.
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Hall effect in Titanates

' - Expected behavior
o a173K | (BR, DMFT):

Hall number is given by
the total volume of the
FS, NOT by the number
0 . . I 8 of carriers as measured
by the Drude weight

-1/Ry (108 Clcm®)
~1/e *Ry (102 fcm®)

FIG. 2. The filling (x) dependence of the inverse of Hall
coefficient (Rg') in Sri-«La:TiOs. Open and closed circles
represent the values measured at 80 K and 173 K, respectively. 1
A solid line indicates the calculated one based on the assump-
tion that each substitution of a Sr2* site with La** supplies the RH
compound with one electron-type carrier per Ti site. /)lF S eC

) —->R,, diverges in the band
R, reported as almost T-independent and i e
Insulator limit, decreases as

consistent w/ laree Fermi surface Mott insulator is reached




Brinkman-Rice: a crash course

- theoretical intermezzo -

Consider for simplicity the infinite-U limit of the Hubbard
model, i.e. the J=0 limit of the t-d model

“Slave-boson™ approach: general concept:

- Enlarge Hilbert space
- Such that the constraint of no double occupancy can be
enforced in an easier way (linear condition)
-And that the resulting theory is prone
to mean-field approaches
(direct identification of physically relevant quasiparticles ?)




“Slave boson” b* such that:
0) = bt|vac) , |o) = f|vac)

subject to constraint:

bth+ ) _fHf. =1

May be generalized to N spin (orbital) species 0 = 1,---, N:

N
bth z: L I il

Physical electron operator:

Hamiltonian:

2
i = N ;Z’thijf;bib;fjo




S = / d'rz [bTa b; +Zfl,— fw] —E/ d*rzztzjfzib b} fio
- . T .
-l—z/o d’r;/\i(‘r) [; fisfioc + b; b; 2] (2.20)

Large-N limit controlled by saddle point. b; and A; fields take static, uniform
expectation value (condensation of the slave-boson):

(b;) = \/gr ; aAd A (2.21)

Effective model of free fermions with:

Gr(k, iwn) Y =twn+p—A—rie (2.22)

(2.23)




Variation w.r.t A yields:

,?._2

1 1
ﬁ;:f;m +5 =73 (2.24)

If we define the doping concentration away from half-filling by: Ny = N(1—
d)/2, we see that:

r’ =4 (2.25)

Hence the slave boson condensation amplitude is directly determined by the
doping.

We also note that p — A is easily found by writing that the particle
number reads:

0 (=) /r?
npo) = [ dups@)= [ deDe (2.26)
so that: —
= = 1o() (2.27)

where pg(d) is the chemical potential of the non-interacting system, corre-
sponding to a doping 4.

This condition insures that the Luttinger theorem is satisfied (large FS)




The physical electron Green’s functions reads:

Nr? _ Nr2/2
5 Gy(k,iw,) = /

G.(k,iw,) = (2.28)

Wy + 1 — A — 1y

while the non-interacting Green’s function reads (remember that the hop-
ping was scaled by 2/N):

1
Go(k, iw,) = 2.29
o (K, iwp) T (2.29)
so that the self-energy reads:
2 =[G — G = b — <p10(6) + i (1 — — (2.30)
. N Nr2

We see that it depends only on frequency, in a very simple manner. The
constant term insures Luttinger’s theorem, as discussed above: u — ¥.(0) =
er, with €}, = 2uo(8)/N the Fermi level of the physical electrons in the
non-interacting system. The linear term yields the quasi-particle residue:



Quasiparticle weight :

N
7 = 57“2 = § (for N = 2)

Effective mass :

Brinkman-Rice:
Large Fermi surface
(consistent with Luttinger theorem counting electrons)
Quasiparticle spectral weight vanishes at small doping
QP effective mass diverges (regularized by J, see next lecture)




Spectral weight transfers in optics:
Dynamical Mean-Field Theory calculations

(need to go beyond simple BR)

n u=1.020, u U=0850,
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Flgure 1 Optical conductivity of Hubbard model. Calculated as described in the main text at dopings x = 1 — n and interaction strength U indicated. a,b, Optical
conductivity. Insets: Optical integral. For x= 0, both paramagnetic (PM) and antiferromagnetic (AF) phase calculations are shown; for x = 0, only paramagnetic phase results
are given. If the band theory value W= 3 eV is used then the frequency scale is electronvoits.

Comanac et al.




Although some aspects of cuprates
(Drude weight, main features and transfers of

spectral weight in optics)
fit with established theories
of doped Mott Insulators (BR, local DMFT),

several key aspects of cuprates
STRONGLY DEPART FROM IT...

= Cuprates take a rather unique route
for the emergence of a metal out of a Mott insulator




Hall effect: strongly non Brinkman-Rice!

Lay_,Sr,CuQy La,_,Sr,CuO
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Fig. 2. Temperature dependence of the Hall
coefficient Ry; of La, ., Sr, CuQ,. Drastic temperature
variations take place above room temperature.

Fig. 3. Ry values are plotted as a function of x for
several fixed temperatures. In the bottom figure, the
values are scaled at x=0.15.

Ry becomes LARGE as doping 1s reduced at low-
Nishikawa et al. 1994 Inconsistent w/ large Fermi surface picture

Hwang et al, 1994 Strongly T-dependent when considered over wide range




Hall number
scaled by
number of
HOLES

A

beautiful
study

(Ando et al. PRL
92, 197001
(2004))
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The « pseudogap »:

partial truncation of the

Fermi surface
at low doping level




Bad things seem to happen to
quasiparticles
In the underdoped normal state !

Cuprate & Quasiparticle
= quasiparticlebuster ¢




Seeing quasiparticles:

Angle-Resolved Photoemission
Spectroscopy (ARPES)

~ Electron
analyzer

Photoemission geometry

Buckley prize 2011
To: Campuzano, Johnson, Shen




The one-particle spectral function:
Injecting/removing an extra particle in a
many-body system

! "i'-*{!k ‘ W f;}r - . 0 I:""J + M T E n El!] :l

PR ‘ ,

A= ‘AQP"'*Ainc

= Slow + Fast

Agplk,w) = Zk _ N-1 Ep N+l
Fermi liquid system




NORMAL state:

* Nodal” regions display reasonably coherent
quasiparticles

* In contrast, excitations in the ""antinodal” regions e.g.
(0,11) are much more incoherent

AND they are (pseudo-) gapped below T*

Kaminski et al.,
PRB 71, 014517 (2005)

Bi2212 Tce=90K@T=140K




ARPES sees « Fermi arcs »

Ca, Na CuO,Cl,

K.Shen et al. Science 2007
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SUPERCONDUCTING state:

* Antinodal quasiparticles make a comeback

(Note: still they remain somewhat fragile and have very small spectra weight
at very low doping... cf also Vishik et al., Nature Physics 2009)

FIG. 1 (color). (a)  ARPES
A : spectra at (7r, 0) of slightly over-
(a) i ~ doped Bi2212 (7. = 90 K) for
/ : - different temperatures (7" = 17,
20, 25, 30, 35, 40, 45, 50,
35. 60, 65, 70, 75, 80, 85,
00, 95, 100, 110, 120, 130,
and 140 K). (b) Spectra at
(,0) at low T (14 K) of dif-
ferently doped Bi2212 samples
(OD—overdoped; OP—opti-
mally doped;: UD-—under-
doped; IR—300 MeV electron
irradiated, followed by the value
of T.). Intensity of the spectra
is normalized at a high bind-
ing energy where the spectral
intensity shows a minimum
—UD75K] (——0.5eV). Inset: Compari-
" UD55K son between low-7 ARPES at
: (7.0) and STM for the same
g OD72K sample.

lllllllll]lllllllll[llllTTllllllll
'

~
R
d
-
¥l
Tt
-~ ]
S’
)
o=
w
=
)
—
=
P

|
[EENI FEE NI A RN AR RN FRE [ YITIITTTIRTIT AR IRI CTATA (ARRTATITA FOIRASALOON

-0.2 -0.1 0.0 -04 -03 -02 -0.1 00

Binding cnergy (¢V) Binding energy (V) Ding et al. PRL 2001




Bm212(1590K)§

= T=40K
——T=140K

5]
]
I A

]
o
Ll

Intensity
energy gap (mev)

o
[

0]

04 03 02 01 C 10 20 30 40
energy (eV) Fermi surface angle

Figure 5 — (a) ARPES spectrum at (5,0) for an underdoped Bi2212 sample in the
superconducting state (30K) and the pseudogap phase (90K). The sharp peak in the

superconducting state is replaced by a leading edge gap in the pseudogap phase. (b) Angular
anisotropy of the superconducting gap (40K) and the pseudogap (140K) for an optimal doped
Bi2212 sample. Data courtesy of Adam Kaminski and Juan Carlos Campuzano.




Take-home message/ARPES:

» Strong Nodal/Antinodal dichotomy in the
normal state

» Possibly extends also for Bogoliubov QPs
in the SC state

* Gradually (?) becomes more uniform in
momentum space as we enter the
overdoped regime




Phenomenology of the
pseudogap state (cont’d) :

- Magnetic response (NMR)

- Specific heat
- Signatures in other spectroscopies:
(c-axis optics and transport, STM, ...

For reviews, see:
-Timusk and Statt, Rep.Prog.Phys 1999
- Norman et al. Adv Phys 2005




Discovery of the PG — NMR -1989
Depletion of magnetic excitations at T*

See 1n particular: Alloul, Ohno and Mendels, PRL 63, 1700 (1989)

Heisenberg model




Doping-dependence of PG scale T
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FIG. 62. Doping dependence of the pseudogap as determined
by the position of leading-edge midpoint (circles, left axis) and
high-energy feature (diamonds, right axis) in the (7,0) ARPES
spectra from Bi,Sr,CaCu,Og, 5 (Bi2212) [the dome represents
the d-wave mean-field approximation A(x)=43kpT.(x)/2,

0.2 . ‘ left scale (Won and Maki, 1994)]. Data from Marshall et al.
Sr Content x (1996); White et al. (1996); Campuzano et al., (1999),

Figure 16. Variation of T* with doping for Lay_, 51, CuOy az measured by various probes. The
full squares denote the temperature below which the Hall coefficient has a rapid temperature
dependence. The open circles refer to maxima in the static susceptibality y (T ) and the full circles the
temperature where the Knight shift starts to decrease. The triangles refer to the temperature where
there 15 a slope change in the dc resistivity, the crosses infrared measurements of 1 /7 supression
and the horizonatal lines to lower limats of infrared data.




Specific heat

(Loram, Cooper et al.) cf. also L.Perfetti et al. pump-probe calorimetry’, 2009
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v(T)=C/T coefficient:

- Is not severely enhanced close to insulator

(OK w/ the notion that J/t sets the effective
MAasSsS and cuts off the divergence w/doping)

- BUT shows depletion at a temperature
T*>Tc for underdoped compounds

(l.,e y becomes T-dependent)




c-axis optics and transport
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Figure 4 — c-axis conductivity (phonon subtracted) for underdoped YBCO, with a pseudogap that
fills in with increasing temperature [21]. Figure courtesy of Dmitri Basov.



Single-particle spectroscopies: PG from STM
tunneling spectra

Main features: Bi2212UD
* Adip at low voltage ~
(pseudogap) / (

* Opens well above T_ in g’ Ak-‘

ubderdoped samples
* An overall particle-hole
asymmetry

di/aVv (a.u.)

Renner et al., PRL (1998)
See review by Fischer et
al Rev Mod Phys 2007

- See seminar by C.Berthod




Lattice-Tracking Spectroscopy
on an UD Sample (Tc=61K)

-200 -1 50 -100 -50 0 50 100 150 200
V [meV]
Gomes, Pasupathy, Pushp, et al. Nature 447, 569 (2007); Pushp, Parker, et al. Science June 26, (2009)
Courtesy Ali Yazdani, 2009




Why is this challenging for theory ?

Approach to the Mott insulator: quasiparticle
coherence scale

Brinkman-Rice/Slave bosons/DMFT: Uniform
scale along Fermi surface (of order ot )

In constrast, in cuprates, strong differentiation
In momentum space is observed

Need to take into account inter-site
superexchange (J)

- singlet formation/antiferro spatial correlations




Some key questions...

Is the pseudogap a precursor effect of pairing ?
Does the PG state correspond to a broken symmetry
(long-range order) settinginat T* ?

Or is the PG rather a crossover due to the increasing
tendancy to singlet formation as T is lowered ?

Other mechanism (e.g. stripes) ?

- Some of these questions will be adressed (if not
answered In subsequent lectures and especially in
seminars
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Early transport data: Takagi et al. PRL 69 (1992) 2975
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FIG. 1. The temperature dependence of the resistivity for
Laz—xSrxCuOs. (a) 0<x=0.15, (b) 0.1 =x <0.35. Dotted
lines, the in-plane resistivity (pss) of single-crystal films with
(001) orientation; solid lines, the resistivity (p) of polycrystal-

line materials. Note, py =(h/e?)d =1.7 mQ cm.

Underdoped - "bad metal’ [Emery & Kivelson, PRL 74, 3253 (1995)]



loffe-Regel-Mott limit (quasi-2D case)

d: interlayer distance

h

p p— pM (kFl) , pM — e_Qd Mott limit

p > pM —> l < )\ F Quasiparticle/Drude/Boltzmann
description does not apply !

WARNING: this reasoning assumes a uniform scattering rate along large FS...




Summary of transport regimes:
(slightly) different views based on
different data analysis

Recent review:
N.E.Hussey J.Phys
: Condens Matter 20
NN 1 (2008) 123201
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Figure 2. Phase diagram of (hole-doped) cuprates mapped out in
terms of the temperature and doping evolution of the in-plane
resistivity p,, (7). The solid lines are the phase boundaries between
the normal state and the superconducting or antiferromagnetic
ground state. The dashed lines indicate (ill defined) crossovers in
pPab(T) behaviour. The meanings of the labels T*, T, and Ty, are
explained in the text.



PRL 93, 267001 (2004) PHYSICAL REVIEW LETTERS

Electronic Phase Diagram of High-7, Cuprate Superconductors
from a Mapping of the In-Plane Resistivity Curvature

Yoichi Ando,* Seiki Komiya, Kouji Segawa, S. Ono, and Y. Kurita
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How should the T* scale be identified from
transport measurements, and disentangled from
SC fluctuation scale ?

[Albenque et al. EPL 91, 37005 (2010)

Ando et al: inflexion point

However] this leads to a T* scale consistently lower (by roughly a factor of 2)
than the NMR determination...
- Need to look at a wider range of temperatures.

doping dependence qualitatively similar however

Clear distinction
Between SC
Fluctuation scale
and PG scale
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Linear resistivity:

* |Is a universal hallmark of optimally doped
samples

* In-plane resistivity per layer very similar
between different materials (w/ vastly
different

anisotropies)

Table 1. pgp (300 K), normalized pgp (300 K) and p/ pap (T2) values
for some optimally doped cuprates.

o (T =300K) py/layer (300 K)
Compound (€2 cm) (€2 cm) o1/ (Te)

YBa,Cu; O, o 290 [39] 580 3 % 10! [40]
La, g3510 7Cu0O, 420 [39] 420 3 x 102 [41]
Bi, Sty ¢ Lag 39Cu0, 500 [39] 500 1 % 106 [42]
Bi,Sr,CaCu,0y5,; 280 [43] 560 1 % 10° [43]
TL,Ba,CuOgy s 450 [44] 450 2 x 10° [45]




Key points:

Large non-saturating resistivity at low doping levels
- bad metal” (Emery-Kivelson PRL 1995)

Linear-T dependence near optimal doping
Approximate linearity above T too

Deviates from linearity at a scale ~ T* (actually >
T* . gradual crossover) - loss of scattering
(optics)
Upturn at low-T at very low doping (impurity effect, cf.
H.Alloul's seminar and Albenque et al EPL 81, 37008 (2008)
Overdoped: much better metal, gradually more FL
like
Low-T behavior for SC samples ?

- hi-magnetic field experiments




Downturn of resistivity at ~ T* can be
iInterpreted as the loss of some inelastic
scattering channel
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Figure 29. The frequency-dependent scattenng rate and the effectnve mass of underdoped Bi
2212, The linear scattening rate develops a gap below 150 K. The frequency scale of thus gap is
only slightly enhanced in the superconducting state. There is no temperamre dependence of the
scattenng at hugh frequency.




Transport/ some questions

* Need better understanding and theoretical
handling of "bad metals’

* Origin of linear resistivity at opt. doping ?

* |s the scattering responsible for the linear
resistivity at optimal doping also
responsible for the hi-T resistivity above T~
In the underdoped regime ?




