``Enseigner la recherche en train de se faire''

Chaire de Physique de la Matière Condensée

CORRELATIONS ELECTRONIQUES ET TRANSPORT DANS LES OXYDES 4d ET COMPOSES SUPRACONDUCTEURS DU FER : HUND PLUTOT QUE MOTT, DRUDE PLUTOT QUE LANDAU

> Les mercredis dans l'amphithéâtre Maurice Halbwachs 11, place Marcelin Berthelot 75005 Paris Cours à 14h30 - Séminaire à 15h45

Antoine Georges

Cycle 2011-2012 2/05/2012 – 13/06/2012 (Pas de séance le 23/05)

Séance du 16 mai 2012

Cours à 14h30 –

Etat métallique des ruthenates et composés supraconducteurs du fer: rôle du couplage de Hund.

- Séminaire : 15h45 –

Silke BIERMANN, CPHT Ecole Polytechnique

Hubbard and Hund: Dynamical Screening Effects in Iron Pnictide Compounds from First Principles

- Séminaire: 16h45 Luca de' Medici, LPS Orsay Orbital-Selective Mott Transitions and their relevance to Fe-superconductors

Pas de séance le 23 mai Reprise le 30 mai (Transport) Séminaires du 30 mai: F. Rullier-Albenque, N. Barisic Recall: a model study: 3 degenerate bands w/ same bandwidth 2D occupied by N electrons per site

$$\begin{split} H_{\rm int} &= U \sum_{m} n_{m\uparrow} n_{m\downarrow} + \\ &+ \sum_{m < n,\sigma} [(U - 2J) n_{m\sigma} n_{n\sigma} + (U - 3J) n_{m\sigma} n_{n\sigma}] \\ &- J \sum_{m < n} [d^{\dagger}_{m\uparrow} d_{m\downarrow} d^{\dagger}_{n\downarrow} d_{n\uparrow} + d^{\dagger}_{m\uparrow} d^{\dagger}_{m\downarrow} d_{n\uparrow} d_{n\downarrow} + \text{h.c.}] \\ &= (U - 3J) \frac{\hat{N}(\hat{N} - 1)}{2} + \frac{5}{2} J \hat{N} - 2J \vec{S}^2 - \frac{1}{2} J \vec{T}^2 \end{split}$$

P.Werner et al. PRL 101 (2008) 166405 L de'Medici, J.Mravlje, AG PRL 107 (2011) 256401

studied with : DMFT

Dependence of Mott U_c on J, in hindsight

Figure 1: Critical coupling separating the metallic and Mott insulating (paramagnetic) phase, as a function of the Hund's rule coupling, for a Hubbard-Kanamori model of three degenerate bands with one (red), two (green) and three (blue) electrons per site. The model is solved with DMFT, with a semi-circular density of states of bandwidth 2D for each band. See Refs. [20, 27].

Key points

Figure 1: Quasiparticle weight Z vs. U for N = 1, 2, 3 electrons in M = 3 orbitals. The grey arrows indicate the influence of an increasing Hund's rule coupling J/U.

- * At ½ filling (3 el. In 3 orbitals) Mott critical U_c is strongly reduced upon increasing J cf. Bunemann, Weber, Gebhard et al.; Han, Jarrell, Cox PRB1998
- IN CONTRAST, away from ½ filling (e.g. N=1,2,4,5) U_c is strongly ENHANCED
 cf. L. de' Medici PRB 83, 205112 (2011)
- At the same time, <u>quasiparticle coherence</u> scale (~ZD) is strongly SUPPRESSED as J is increased cf. Suppression of Kondo scale

N=1 electron

Quasiparticle weight Z vs. U/D

N=2 electrons

For N=2,4: Hund suppresses coherence scale → « Bad metal » behaviour, small Z

Increases $U_c \rightarrow$ Enhances range of metallic state

As a result, for generic filling... (i.e. not $\frac{1}{2}$ filling and not 1 electron or hole) e.g. for 2 or 4 electrons in degenerate t_{2g} bands

... J is « Janus-faced » : it has two ANTAGONISTIC effects

Janus is the latin god of beginnings/ transitions and is often associated with doors and entrances and has two faces. His first mention in physics is due to P.G. de Gennes Drawing a map of early transition-metal oxides (both 3d and 4d) with Hund's rule coupling as guidance

Cf. ``Atsushi Fujimori's map of RMO₃ perovskites'' J.Phys Chem Sol. 53 (1992) 1595

Partially filled d-shells... and yet often insulators

Correlation effects in 4d oxides due to J, not to Mott physics (except when strong splitting between orbitals)

3d oxides: U/D ~ 4 4d oxides: U/D ~ 2 Focus in the following on: Technetium and Ruthenate oxides

OUTLINE of this lecture:

- 1. A remark on AF order in Technetium
- 2. Evidence for key role of Hund's coupling in ruthenate Sr₂RuO₄
- 3. Nature of the `spin-freezing' non-Fermi liquid regime:
- Behaviour of physical quantities and possible relevance
- Status of theoretical understanding
- 4. Moving on to iron pnictides and chalcogenides
 → seminars

Record-high Néel temperature in Technetium oxide (SrTcO₃) - contrast to SrMnO₃

PRL 106, 067201 (2011)	PHYSICAL	REVIEW	LETTERS	week ending 11 FEBRUARY 2011			
Ś							
High Temperature Magnetic Ordering in the 4d Perovskite SrTcO ₃							

Efrain E. Rodriguez,¹ Frédéric Poineau,² Anna Llobet,³ Brendan J. Kennedy,⁴ Maxim Avdeev,⁵ Gordon J. Thorogood,⁶ Melody L. Carter,⁶ Ram Seshadri,⁷ David J. Singh,⁸ and Anthony K. Cheetham⁹

We present evidence for possibly the highest magnetic ordering temperature in any compound without 3d transition elements. Neutron powder diffraction measurements, at both time-of-flight and constant wavelength sources, were performed on two independently prepared $SrTcO_3$ powders. $SrTcO_3$ adopts a distorted perovskite structure with *G*-type antiferromagnetic ordering and has a moment of $1.87(4)\mu_B$ per Tc cation at room temperature with an extraordinarily high Néel point close to 750 °C. Electronic structure calculations reveal extensive mixing between the technetium 4d states and oxygen states proximal to the Fermi level. This hybridization leads to a close relationship between magnetic ordering temperature and moment formation in $SrTcO_3$.

Mechanism: SrTcO₃ ($T_N \sim 1000$ K) very close to Mott transition (Hund lowers U_c) (In contrast SrMnO₃ is a more localized insulator, $T_N \sim 260$ K)

J.Mravlje et al. PRL 108, 197202 (201<u>2)</u> Figure 3. The Néel temperatures as a function of coupling $g \equiv \mathcal{U}/\mathcal{U}_c$, with $\mathcal{U} \equiv U + 2J$ and $\mathcal{U}_c = (U + 2J)_c$ the value at which the metal-insulator transition occurs in the paramagnetic state. T_N are normalized to the maximum Néel temperature T_N^* found when varying \mathcal{U} . The gray line is for the single-band Hubbard model (DMFT calculation of Ref. [19]).

2. Sr₂RuO₄: A Hund's correlated metal

J.Mravlje et al., PRL 106, 096401 (2011)

Ruthenates: cf. seminar last week by F.Baumberger

Sr₂RuO₄: the `Helium 3' of transition-metal oxides !

- Huge high-quality crystals !
- Has been investigated with basically all techniques in the experimentalist's toolbox
- 4d-row structural analogue of La₂CuO₄
- Beautiful review articles:
- A.Mackenzie and Y.Maeno

RMP 75, 657 (2003)

- Bergemann, Adv. Phys. 52, 639 (2003) [Focus on dHvA quantum oscillations]

Yet, outstanding puzzles about this compound remain...

- A 4d material
 - \rightarrow expect not very large U (< 3eV)
- Yet, effective mass enhancement (vs. band/LDA value) as large as ~ 5
- Strong orbital dependence
- Low Fermi-liquid coherence scale:
- T² law obeyed only below ~ 30K
- Quasiparticles suppressed above ~ 130K, at which interlayer resistivity crosses over from metallic to insulating

Basic electronic structure :

- 4 electrons in t_{2g} shell
- d_{xy} orbital yields a quasi 2D band → γ-sheet of FS
- d_{xz} , (resp. d_{yz}) \rightarrow bands with directional hopping along x (resp. y) $\rightarrow \alpha, \beta$ sheets

Fermi surface of Sr₂RuO₄

and populations from dHvA:

FS from quantum oscillations:

FS from photoemission:

β-sheet (0.9 electrons)

k_v

α-sheet 0.2 hole

k_x

 γ -sheet (xy)

1.3 electrons

But kinetic energies of all bands comparable

Effective masses

TABLE II. Summary of quasiparticle parameters of Sr ₂ RuO ₄ .			
Fermi-surface sheet	α	β	γ
Character	Holelike	Electronlike	Electronlike
$k_F (\text{Å}^{-1})^{a}$	0.304	0.622	0.753
$m^* (m_e)^b$	3.3	7.0	16.0
m^*/m_{band}^c	3.0	3.5	5.5
$\nu_F ({\rm ms}^{-1})^{\rm d}$	1.0×10^{5}	1.0×10^{5}	5.5×10^{4}
$\langle v_{\perp}^2 \rangle (m^2 s^{-2})^e$	7.4×10^{5}	3.1×10^{6}	1.0×10^{5}
$t_{\perp} (\mathbf{K})^{\mathbf{f}}$	7.3	15.0	2.7

-Rather large !

- Strongly orbital dependent.

- The widest band has the largest eff. mass enhancement !

Dynamical Mean-Field Theory calculations (using full LDA bandstructure): - effective masses -

$J [\mathrm{eV}]$	$m_{xy}^*/m_{ m LDA}$	$m_{xz}^*/m_{ m LDA}$	$T_{xy}^*[\mathbf{K}]$	$T_{xz}^*[\mathbf{K}]$	$T_>[K]$
0.0, 0.1	1.7	1.7	> 1000	> 1000	> 1000
0.2	2.3	2.0	300	800	> 1000
0.3	3.2	2.4	100	300	500
0.4	4.5	3.3	60	150	350

Table I. Mass enhancement of the xy and xz orbitals, as a function of Hund's coupling, for U = 2.3 eV. Other columns: coherence temperatures as defined in the text.

- Increase of effective mass as J is increased
- Orbital differentiation: xy heavier
- Comparable mass enhancement would require U=5eV at J=0 !

For U=2.3 eV

Contrast: Hund's correlations vs. Hubbard U Sr_2RuO_4 (d⁴) vs. SrVO₃ (d¹)

SrVO3: Courtesy M.Casula Fig: J.Mravlje

Quasiparticle coherence scale

Inverse QP lifetime / T:

Figure 1. Temperature-dependence of Γ/kT , with \hbar/Γ the quasiparticle lifetime. The shaded region corresponds to the 'coherent' regime with long-lived quasiparticles such that $\Gamma \lesssim kT$.

Fermi Liquid @ low-T T-linear above ~ 400 K Reaches ~kT at ~ 70K

Low-T calculations made possible by recent progress in DMFT technology: CT-QMC solver of P. Werner et al.

Comparison to ARPES

Figure 2. (a) Intensity map of the spectral function $A(k,\omega)$ along $\Gamma \to M$ for $0.55\pi/a \le k_x \le 1.05\pi/a$, $k_y = 0$ at T = 60 K compared to ARPES [14]. (b,c) Spectral lineshapes at wavevectors k_1 , k_2 compared to ARPES [3]. (d,e) Im $\Sigma(\omega + i0^+)$ and

Self-energies vs. ARPES

xy `effective hybridization strength' to environment is smaller (by at least a factor of 2) than xz, yz

Initial LDA eff. Hybridization:

$$\mathrm{Im}\Delta(i\omega \to 0) = G_{\mathrm{loc}}^{-1} = -\frac{\mathrm{Im}G_{\mathrm{loc}}}{(\mathrm{Re}G_{\mathrm{loc}})^2 + (\mathrm{Im}G_{\mathrm{loc}})^2}$$

Proximity of van Hove singularity for xy makes DOS larger and Strongly p-h asymmetric →Both effects reduce hybridization

3. `Spin-freezing' regime and non Fermi-liquid behaviour

FIG. 1 (color online). Phase diagram for J/U = 1/6 and $\beta t = 50, 100$ in the space of density *n* and interaction strength *U*. The light line with circles or diamonds indicates a phase transition between a Fermi liquid metal and a "frozen-moment" metal. The black lines mark the regions of Mott insulating behavior.

`Spin freezing' Werner et al. PRL 2008 Haule&Kotliar NJP 2009

25

FIG. 3 (color online). Doping dependence of the imaginary part of the Matsubara axis self-energy for U/t = 8, $\beta t = 50$ (full symbols) and 100 (open symbols) at dopings indicated. The dashed lines are proportional to $(\omega_n/t)^{\alpha}$, $\alpha = 0.5$, 0.54, 0.62 (from top to bottom).

Non Fermi-Liquid regime Power-law self-energy (P.Werner et al) $D Im\Sigma \sim C + (\omega/D)^{\alpha}$

FIG. 4 (color online). Results of a fit of the computed Matsubara-axis self-energy to the scaling form $-\text{Im}\Sigma/t = C + A(\omega_n/t)^{\alpha}$ at temperatures T = t/50 (diamonds; blue online) and T = t/100 (circles; red online) at density n = 2 and interaction strengths indicated. The plot illustrates the wide quantum critical regime of the spin-freezing transition.

A Fermi liquid is recovered at (very) low T

Courtesy J.Mravlje

Possible phenomenological consequences Theory still partly to be worked out and experimental evidence wanted !

Bad metal, non-T² resistivity (T^{1/2} ?) Non-Drude optics at low-frequency (1/ $\omega^{1/2}$?) Local moments coexisting with metallic transport

4. Current status of theoretical understanding → Blackboard

Key ref: L. De Leo PhD thesis (SISSA, Trieste) See also: De Leo and Fabrizio, PRB 69 (2004) 245114

After Schrieffer-Wolf transformation of impurity model:

Strategy (a la Nozieres-Blandin) Diagonalize HK first Residual degree of freedom and interaction ?

$$\begin{split} H_K &= -J \left[2 \vec{S}_d \cdot \vec{S}_d + \frac{1}{2} \vec{T}_d \cdot \vec{T}_d \right] \\ &+ \frac{4t^2}{U} \sum_{ab} \sum_{\alpha\beta} c^{\dagger}_{1,a\alpha} c_{1,b\beta} d^{\dagger}_{b\beta} d_{a\alpha} \\ &- \frac{2t^2}{U} \sum_{a\alpha} \left(c^{\dagger}_{1,a\alpha} c_{1,a\alpha} + d^{\dagger}_{a\alpha} d_{a\alpha} \right) \end{split}$$

$$H = H_K + H_{cond}$$

= $H_K + \sum_{n=1}^{\infty} t_n \left(c_{n,a\alpha}^{\dagger} c_{n+1,a\alpha} + h.c. \right).$

Spectrum of atomic t_{2q} hamiltonian with U'=U-2J

Ν	\mathbf{S}	L	Degeneracy = (2S+1)(2L+1)	Energy	
0,[6]	0	0	1	0	
1,[5]	1/2	1	6	$-5J/2, [10\mathcal{U}-5J/2]$	
2,[4]	1	1	9	$\mathcal{U}-5J, [6\mathcal{U}-5J]$	
2,[4]	0	2	5	$\mathcal{U}-3J, [6\mathcal{U}-3J]$	
2,[4]	0	0	1	$\mathcal{U},[6\mathcal{U}]$	
3	3/2	0	4	$3\mathcal{U} - 15J/2$	
3	1/2	2	10	$3\mathcal{U}-9J/2$	
3	1/2	1	6	$3\mathcal{U}-5J/2$	

Table 1: Eigenstates and eigenvalues of the t_{2g} Hamiltonian $\mathcal{U}\hat{N}(\hat{N}-1)/2 - 2J\vec{S}^2 - J\vec{T}^2/2$ in the atomic limit ($\mathcal{U} \equiv U - 3J$). The boxed numbers identifies the ground-state multiplet and its degeneracy, for J > 0.

- Hund's rule ground-state in each particle-number sector
- Symmetry broken by J from SU(6) to U(1)c×SU(2)s×SO(3)o
- \rightarrow Degeneracies lifted by J

Iron-based superconductors: pnictides and chalcogenides

A controversial question since discovery (2008): How correlated are these materials ?

- Weak coupling itinerant antiferromagnets (SDW) a.k.a Chromium ?
- Strongly correlated metals, possibly driven by Hund's coupling rather than proximity to Mott ?
- Very localized magnetism