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Electronic configuration

of neutral isolated atom:
e]2522p4
oxygen
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1. Some crystal structures




Structures

2.1 Monoxides MO: not much controllability...

NaCl structure

Nominal valences:

(quite ionic)

- Oxygen takes 2 electrons
- Ligand shell 2s22p* full

- M gives out two electrons:
> M2+

TiO, VO: ~ metals
(O-deficient)

MnO, CoO, NiO: Mott
(or charge-transfer)
magnetic insulators

(historic example: NiO)
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Ternary compounds (and more):
the simple (and beautifuly perovskite structure

and its descendants...

Perfectly cubic For example: EENAOR
perovskite RMO, :

- transition-metal

lon ' at center of
oxygen octahedra
—->MOg structural units

- R+0O form fcc lattice

- Rare-earth ions R
form simple cubic lattice

[L.A Perovski 1792-1856
Oural mountains samples
discovery of CaTiO3 G.Rose, 1839]




Perovskite: discovery and origin of the name

Count

Lev Alexeievich
Perovski
(1792-1856)
Minister of Interior
under Nicolas 1st
and Mineralogist

Gustav Rose
(1798-1873)
German mineralogist

Roselite
Armand Levy

Perovskite CaTiO,
described in 1839

by Gustav Rose

who named it

after Count Perovski




Perovskite: identification of crystal structure

Victor Moritz Goldschmidt
(1888 Zurich-1947 Oslo)
Pioneer of geochemistry

First described perovskite
structure. Introduced "tolerance
factor’ and coined "lanthanide

contraction’ (among many achievements)
Mountain ridge Goldschmidittfiella (Spitzberg)

Helen Dick Megaw

(1907-2002)

Irish crystallographer

X-ray crystallography pioneer
Established perovskite structure

CaSn03: Megawite

Megaw island-Antarctica (work on ice crystals)




Distorted perovskites

Depending on the ionic radii of the 3 ions, the material often
adopts a structure which breaks perfect cubic symmetry
(= e.g. orthorombic)

Example:

"GdFeOQj distortion

- Octahedra remain perfect
(no or very small Jahn-Teller)
- Rotation of octahedra along
[010] and [001]

- Orthorombic symmetry

- 4 M-atoms per unit cell, all
equivalent by symmetry

- M-O-M angle becomes 7-6

Other possible distortions
e.g rhomboedric, rotation [111]




RMO, : tolerance factor” (cowaschmia

- Consider close packing by hard spheres
of radii rg, ry, ro (ionic radii)
- Call a length of cubic cell

[
Z
=
@
g
g

* t=1: ideal cubic perovskite

* t<1: deforms to rhomboedral,
then orthorombic

* 1 too small (<0.86): unstable




All this

offers control on the material:

» Substitutions on R-site allow for a control of
the (nominal) valence of M-ion (‘doping’)
« e.g: LaTiO;>La3* [Xe], Ti** : [Ar]3d! config.

. d
e |Sso-va

[10,>Sr?* [Xe], Ti** : [Ar]3d° config.
ent substitutions on R-site allow for a

contro
Bandwi

of the distortion, hence of:
dth (see below)

And importantly of the splitting between d-levels

39 57 38 22
Y I La*ll Sr Ti

[Xe]6s25d] [Kr]552 [Arlds!3d3
lanthanum strontium titanium

138.9 87.62 47.88




Sensitivity to distortion: RNiO; compounds (cf also lecture 1)
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Controlling dimensionality: the Ruddlesden-
Popper series R, ,{M_O, .1 (layered perovskite’)
Sr;Ru,0;

14/ mmm

MO, layer 2> &

IVZ!

MO, layer 2> g

I4/mmm

SI-ERU_()ﬂr Increasing n : " “from d=2 to d=3"
Usual perovskite RMO, corresponds to n—=>infinity




Some

§:7i03  LaTiO3
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Sr 1M O5 .4 2(n+1)+4n-2(3n+1)=0 =M remains 4+ for all n
e.g. M=Ti 3d' shell (titanates); M=Ru 4d* shell (ruthenates)

La, .4M O, .,: La’* >nominal valence of M is (3n-1)/n +
e.g. (La,Ba),CuQ, first discovered hi-Tc SC




The Mott phenomenon plays a key role

" Band o3 Mott- o o el RS e
insulator Jinsulator g - S Ll R

“Atsushi Fujimori’'s map of RMO, perovskites™
J.Phys Chem Sol. 53 (1992) 1595

Partially filled d-shells... and yet often insulators




2. Crystal-Field Theory

Simple notions
(Bethe, van Vleck ~ 1930s)




Orbitals: from the isolated atom to the solid
Crystal-field Spllttlng (Bethe, van Vieck)

Cubic-symmetry adapted 3d orbitals are quite localized:
3d-orbitals: - No nodes in radial part

7S - Large centrifugal barrier I(I+1)/r2
. The Orbitron

4 ‘ 4& dazz—yz / d322—fr2

- The €4 doublet

1 T O Thety triplet

http://winter.group.shef.ac.uk/orbitron




Crystal-field splitting
In octahedral environment :

e, orbitals point towards oxygen
atoms(sigma-bonding)

—>feel larger Coulomb potential
—> pushed to higher energy

t,4 orbitals point away from oxygen
atoms(pi-bonding)

—>feel smaller Coulomb potential
— lower energy than e,




Intra e, splitting

Intra-t,, splitting

free atom cubic tetragonal orthorhombic
(octahedron type)

FIG. 2. Crystal-field splitting of 3d orbitals under cubic, te-
tragonal, and orthorhombic symmetries. The numbers cited
near the levels are the degeneracy including spins.

Lowering further the crystal symmetry (distort from cubic)
Induces additional lifting of degeneracy

Orthorombic perovskite = Fully lifted

Tetrahedral environment (MO,):
e, has lower energy, t,, higher




Other environments

T
y, dz d22
7/
/

7/
>~

X -y

Octahedral

quare pyramidal quare planar




A crystal-field theory primer...

Hydrogen atom wave-functions with [ = 2 (d-shell). Spherical coordi-
nates: ¥ = r (sin # cos ¢, sin f sin ¢, cos @).

.i',-":?m(ﬂj {j';r) — R(I‘) y;zm (9 D)

kgl . - F = i ‘.‘,'r- e : y '
}.3{ ~ 3cos’l —1 \ l/fl ~ sin 260 e \ l/ﬂﬂ ~ sin® § e*¥2

Cubic harmonics, transforming under irreducible representations of cubic
group:
TY Nyl D) ~ A sin 6 cos ¢ sin #sin o ~ sin® 6sin 26 ~ Y, — Y, 2
‘y " :\'\,J.-y 1 T‘E S SN [ - =0 2 2
Similarly:

~—+1 ~—1 ~+1 —1 ~+2 r—2 -0
Xxz ™ }/2 + }2 v Xyz ™ }2 - }/2 y Xaz2—y2 ™ }2 + }/2 s X322—p2 ™ Iy

MOg octahedron: Potential created by point charge on O-sites at center
of cube, d being distance to center:

Ze? - 1
o 1 3.1
(7) 4meg ; |7 — Rl =




Expand:

deq

Ze?

Vi) =+

Treat second term as perturbation oV (r, 8, ¢): breaks spherical symmetry.
Because of proper choice of cubic orbital above:

(X | OV | Xt ) At Oy form = xy, x2,y2

‘AE‘ -ﬁm e’ form = :I?E — yﬂ? 3.‘_{2 — -,‘r‘2




Why is ruby red ?

cf e.g: http://www.chm.davidson.edu/vce/CoordChem/CFT.html

Ruby: small amount Corun)d-@rn
Of Cr 3* impurities
Substituting Al** in

Al,O; (corundom),

a large-gap

transparent insulator

relative absorbance

wavelength (nm)



3.From Crystal Field Theory
to Band Structure




From the atom to the full solid: energy bands of oxides

o ,_f:

(or: how to make sense of a plate of spaghettis...)
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PRL 92 (2004) 176403
New J.Phys 7 (2005) 188
Amadon et al.

PRB 77 (2008) 205112 FIG. 1. LDA band structure for SrVOs;.




Density of states:
(orbitally-resolved, i.e projected on ~ atomic orbitals)
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Strong mixing of V-eqg states with oxygen
: < < e t2g bandwidth ~ 2.6 eV




To understand orbital character better, plot fat bands’:

Project Bloch functions onto atomic-like orbitals and

plot matrix element at each k-point: Wl >‘2
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Summarize key infos from band-structure, in
this (quite) simple case:

t,, manifold of 3 bands well-separated from oxygen
(below) and e, bands (above)

t,, bands occupied by 1 electron in total (as requested)
t,, bandwidth around 2.6 eV

Distance between center of t,; and center of oxygen
band: about 6.5 eV (only 1eV from top of O to bottom of t2g
though) = "charge-transfer energy’ is large

Bandstructure (LDA) is that of a METAL

Effective mass (from specific heat) is found to be roughly
a factor of 2 larger than the one from LDA




More on the bandwidth:
hopping IS via oxygen

- Each Vanadium is in a cage of 6 oxygens

—>Direct d-d hopping is difficult, hence direct t , is small

(this is one of the two main differences between a pure
Transition metal and its oxide, the other one being that the

4s orbital is empty in the oxyde = oxydes have narrow bands)

- Hopping of electrons on V-sites occurs through hybridization
between O p-orbitals and V d-orbitals, with amplitude tpd

-Roughly, when the charge-transfer energy A (see below) is large,
the amplitude of the effective d-d hopping is of order:

dd
teff ™~




Distortion: covalency between O
and cation (Sr,La)

Figure 7. Schematic representation of the O-A covalent bonds shown for LaTiO5
in figures 5 and 6: O1 binds to two while O2 binds to one of the four A-neighbours.
One of the two O1-A bonds is relatively weak and is indicated by a short, red arrow.
The resulting GdFeO;-type distortion shortens the O-A bonds correspondingly. In
CaVO;, LaTiO;, and YTiOs3, the shortest O1-A bond is shortened by respectively
10, 17, and 28% with respect to the average, the 2nd-shortest O1-A bond by
respectively 4, 11, and 23%, and the shortest O2-A bond by respectively 12, 16,
and 22%. The oxygen coordination of the A-ion is reduced from 12 to 4, with two
of the near oxygens being in the horizontal, flat face of the distorted A-cube, and
the two others in one of the vertical, buckled faces. The A-B-A diagonal (orange
bar) lying in the plane of the short, red arrows is shortened by respectively 3, 7,
and 9% of the average. The unit shown is the front bottom left one (subcell 1)

seen in e.g. figure 2.



Effects of the orthorombic distortion:
ALL METALS in LDA !)
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Left panels: hypothetical cubic; Right panel: real structure
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shown in figures 4, 12, and 17. In order to emphasize the development of the
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of the bands has been shaded.
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The two effects of distortion:
* 1) Reduction of total t,, bandwidth:

Table 8. ;. edge-to-edge (W, ) and rms (W) bandwidths in eV.

SEVO; [42]  CaVO, [43]  LaTiOa [44]  LaTiOs [12]  YTiOs [20]
Wi, 2.85 2.45 2.09 1.92 2.05
W 2.85 2.39 2.18 2.08 1.87

This is because the O-M-O bond is no longer straight
—> pi-bonding less efficient

2) Splitting between t,, orbitals (ifting of

C ol =

orbital degeneracy) =

(140,200) meV for LaTiO3 ; *’ ‘
(200,330) meV for YTiO3

- Both effects are responsible for the Mott insulating nature
of LaTiO; and YTiO4 (see below)




4.The role of the Ligand
(oxygen) states

- Hopping is through oxygens: M-O-M bond
- What costs less: removing an electron from
Metal or from Oxygen (i.e. forming a ligand hole) ?




Charge-Transfer Energy

(a) Mott-Hubbard insulator

vacuum

(b) Charge transfer insulator | /\ < |J

U

dn-l - A -\ g™ ]
/LN
E F

U=EM-E,™ - Epol

A= EIO — EATM - Epol + 0E,, If A < (W+w)/2 = Self doped metal

SIS Epol depends on surroundings!!!
10nization CNCrey

a Clectron affimity energy J.Hubbard, Proc. Roy. Soc. London A 276, 238 (1963)

E,; Madelung energy . ZSA, PRL 55, 418 (1985)

slide courtesy G.Sawatzy, MaNEP school 2015




The ZSA phase diagram’

Cu0

Charge-tranisfer

) NiO
~o,| INSUlators

LaFeO,

7.0, e chrd:ll\/lott
~_o0, INSUlator

Bocquet et al.
PRB 1996

Zaanen, Sawatzky, Allen
PRL 55, 418 (1985)

Late TMOs are
charge-transfer insulators
(U>A):

attractive potential

of nucleus is larger,
Hence large electron
removal energy d" >d"’
and less screening




Effective model depends on choice of
selected energy range

Decide for which bands (or rather: for which energy window)
an effective model will be constructed

V-t2g and eg states
V-1,4 states only And O —states

(3 bands) ’ > (14 bands)

Small energy window ,, ' Large energy window
->Wannier functions | 7 ~Wannier functions

will leak on oxygen are quite localized
sites to capture and atomic-like
V-O hybridization




t,4 only: extended Wanniers V t, e, and O:

r— very localized Wanniers
Low
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FIG. 7. (Color online) Distinct WFs for SrVO; obtained from
the MLWF construction using the MBPP code. First row: O(p,),
O(p,), and O(p,) for a chosen oxygen site. Second row: V(1,,,xy)
as well as V(eg.3:2—/3) and V(c'g..\'z—_\‘z). The contour value for
each of the MLWFs was chosen as 0.05 (a.u.)™%2.

F.Lechermann et al.
Phys Rev B 74 (2006) 125120




Models (very schematic — ignoring important ‘details’)

Full d-p:

= U Z dTp]JredZde +5p2pjpj+

1eEMje0

+ §Udd Zﬁdi(ﬁdz‘ — 1) A=¢ecqg—ep,+nqUgq

Low-energy (extended Wanniers on M-sites):

—tofr Z c;Cir + Ueffzn@

1’ eM

t2
d
te ~ 2= , Ueff ~ A\ (in A>U,, charge-transfer regime)

JAN




5. Interactions

For simplicity, | will not describe the full structure
of interactions for a 5-orbital d-shell

(i.e. Slater-Racah parametrization of U, 1 1om3ma)
- see my 2009-2010 College de France lectures

| will instead focus on a t,; (3-fold) or e, (2-fold)
shell in cubic symmetry (Kanamori)




The Platters said:

« Only U can do
make all this world
seem right... »

... lake-home message here:
« Not only U...

.... also Hund’s rule coupling J » !

Friedrich Hund
1896-1997




triplet, only 3 independent Coulomb integrals:

[ i 1om P Velr ) 6,0 £ 0

/ Ardr’ o (1) (1) Va1, 1) o (1) o (1)

Indeed:
J=J’ (real wave-functions)

U mmm=0 by symmetry

V.: SCREENED Coulomb interaction in the solid




Hence, Kanamori hamiltonian:
[J.Kanamori, Prog. Theor. Phys. 30 (1963) 2795]

Hyg = UanTnmi + U’ Z Aty + (U= J) Z NmoNm’e +

m+#m/ m<m/’ o

+ + gt
—J Z me mid ’.L m'T +J Z medm,Ld ’.Ldm’T

m#m’ m+#m/’

EXACT for a t,, shell

Useful reference: Sugano, Tanabe & Kamimura,
Multiplets of transition-metal ions in crystals
Academic Press, 1970




Assuming furthermore ~ spherical symmetry of the screened
interaction V. , one can show that: U’ = U-2J
In this case, the hamiltonian can be written:

N = Z Nmo ’§ = %Z Zd;a’f‘oa'dma’ , Lm =1 Z Z Emm'm”djnlgdm”a:

mo m oo’ m'm’ o

Total charge, spin and orbital iso-spin operators




Spectrum of atomic t,, hamiltonian with U'=U-2J

S L Degeneracy = (25 +1)(2L + 1) Energy

0,6] 0 0 1 0
L[5 1/2 1 6 —5J/2,[10U — 5J /2]
2,4 1 1 9 U—-5],[6U—5J]]
2,4 0 2 5 U—-3J,[6U—3J]
2,4 0 0 1 U,[6U]

3 3/2 0 4 3U —15J/2

3 1/2 2 10 3U—9J/2

3 1/2 1 6 3U —5J/2

Table 1: Eigenstates and eigenvalues of the 3, Hamiltonian U N (N —1)/2-2J 52 — JT? /2 in
the atomic limit (U = U — 3J). The boxed numbers identifies the ground-state multiplet and its
degeneracy, for J > 0.

- Hund’s rule ground-state in each particle-number sector
- Symmetry broken by J from SU(6) to U(1)cxSU(2)sxSO(3)o

- = Degeneracies lifted by J




Hund’s rules

(1925 — Z.Physik
On atomic spectra of transition metals)

N electrons in a M=2|+1-fold degenerate shell

 Maximize S [= N/2 N<M ; = M-N/2 N>M]
« Given S, maximize L

* Given (S,L) lowest J=|L-S| if N<M (less
than % filling) , highest J=L+S if N>M




“"The bus-seat rule”

For example a d-shell with 3 electrons (less than half-filling corresponding to 5 electrons) will have
1,1,1,0,0 and with 7 electrons 1,1}, 1,1,1. These rules are sometimes referred to as the ‘bus-seat’
rule: singly-occupied spots are filled first, then double occupancies are created when singly-occupied
spots are no longer available.




Physical origin: exchange (QM)

Minimize cost of inter-electron Coulomb
repulsion

Ex: For 2 electrons, S=1 forces an antisymmetric
orbital wave-function ("electrons further apart’),
in contrast to S=0

Actually, screening of nucleus-electron interaction
(smaller in singly occupied orbitals) actually plays a key
role (cf. Levine, Quantum Chemistry) in lowering the energy of
singly-occupied states

3" rule due to spin-orbit




The critical coupling for
the Mott MIT
depends crucially on
Hund’s rule coupling

and on the filling of the shell

cf. van der Marel & Sawatzky PRB 37 (1988) 10674
van der Marel PhD’s thesis
L. de’ Medici PRB 83 (2011) 205112




Energetic of the Mott gap — a) the atom

cf. van der Marel&Sawatzky PRB 37 (1988) 10674 ;
L. de’ Medici PRB 83 (2011) 205112

A, = Eo(N+1)+ Eo(N — 1) — 2Ey(N)

Hund'’s rule ground-state E, not affected by spin-flip and pair-hopping terms.

N<M (N>M) : Max spin state only U’-J = U-3J matters

at . .
- Atomic gap and U4 REDUCED by J for N<M, N>M

N = M (half-filled shell) :

Excited state with M+1 electrons has higher energy: | T‘l’ T T>
Eo(M+1) = (U'=J)xM(M—1)/24+Ux14U’'x (M —1) = (U'—=J)M (M+1) /2-+(U—-U"+MJ)
Aa’t = Uery —(U’ J) (U U,—I—MJ) _U—l-(M 1)J
—> Atomic gap gap and U4 INCREASED by J for N<M, N>M




Crucial effect on Mott gap in the solid:

3-orbital Kanamori-Hubbard model

L. de’ Medici, PRB 83, 205112 (2011
(con) cf. early work on V:Sq

Fujimori et al. PRB (1991)




Crucial dependence of U, on filling

0 1.0 2.0 3.0 4.0 5.0 6.0



“Atsushi Fujimori’'s map of RMO, perovskites”™
J.Phys Chem Sol. 53 (1992) 1595
Imada, fujimori, Tokura, Rev.Mod.Phys (1998)

- Band - i
Insufatcr 3

distorted

Note: no metals with Y2-filled subshells (d3, d®)

Hund’s J is crucial to make contact with real-life |




I\/Ietalllc vanadates vs. Insulating Titanates:
ot 70 solving the puzzle

7
6
5
4
3
2
1
0

o

CubicdegM=3: D ~ 1.5eVJ/D ~ 0.45 = U, ~ 8eV'!
Full t,, splitting M=1: D ~ 1leV = U, ~ 3D = 3eV'!

Reduction of orbital deg. and Hund'’s play a key role,
not only/primarily reduction of bandwidth by distortion !




Electronic structure + Many-Body (DMFT) calculations:
accouting for metallic/insulating nature of vanadates/titanates

E 08 J=0.68 eV J=0.68 eV

< U=5eV Srvo3 U=5eV CavVO3
B 067 1t

-

LY

{ ol

8

8 o2}

< 08} , ,

g J=0.64 eV LaTiO3 J=0.64 eV )‘ YTiO3
& 061 Ussev U=5eV

L

£ ool

:

02

- due
E.Pavarini et al.. PRL 2004 to correlations (the Brinkman-Rice
. , phenomenon)
cf. also Seklyama et al. (C8/SFVO3) - Hubbard satellites (i.c extension to the

PRL 2004 solid of atomic-like transitions)



Quantitative comparison with experiments
guasiparticles + lower Hubbard band clearly resolved
In bulk-sensitive photoemission experiments

— SrVO, (LDA+DMFT(QMC), 300 K) ?’
—- CaVO, (LDA+DMFT(QMC), 300 K) %
o Sr\"(); (Sekiyama et al. 2002, bulk) 4

o (‘a\"()‘ (Sekiyama et al. 2002, bulk)

—
72

v
—
=
P
e
3]
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S —
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>
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-
L
-

=

& l
Energy (eV)

FIG. 4: Comparison of the calculated. parameter-free
LDA+DMFT(QMC) spectra of SrVOs; (solid line) and .
CaVO3 (dashed line) with bulk-sensitive high-resolution PES Sek|yama et al,

(SrVOy: circles: CaVOy: rectangles) [4]. Horizontal line: ex-
perimental subtraction of the background intensity. CalerOS




Strong orbital polarization predicted in the
iInsulating materials :

0.586]xy) + 0.275|xz) + 0.762|yz) for LaTiOs

(88% of d1 electron population)

0.622|xy) — 0.029]xz) + 0.782|yz) for YTiO,

(96% of d1 electron population)

FIG. 1 {_u_.'llt_}l ). Pbnm primitive cells (right panels), subcells |
a«— (left panels), and the occupied t,, orbitals for LaTiO; (top
panels) and YTiO; (bottom panels) according to the LDA +
LDA+DMFT calculations DMFT calculation. The oxygens are violet, the octahedra
yellow, and the cations orange. In the global, cubic xyz system

o0




Advertisement for Hund’s
physics afficionados:

""Hund’s metals™

(e.g. Ruthenates, Fe-based SC)
- See 2012 lectures @ College

: 1,4,5 . 23
Antoine Georges, "’ Luca de’ Medici1,”” and
Jernej Mravlje'-*¢

Annu. Rev. Condens. Matter Phys. 2013. 4:137-78




J IS « Janus-faced » :
It has two ANTAGONISTIC effects

Janus is the latin god of beginnings/
transitions and is often associated
with doors and entrances
and has two faces.

He was first promoted to being a
physicist by Pierre-Gilles de Gennes
(“Janus grains”)

week ending

PRL 107, 256401 (2011) PHYSICAL REVIEW LETTERS 16 DECEMBER 2011

Janus-Faced Influence of Hund’s Rule Coupling in Strongly Correlated Materials

; .ol : . 2,34 : 2,4,5.6
Luca de’ Medici, Jernej Mravlje, and Antoine Georges




N=1 electron N=2 electrons

Quasiparticle
weight Z
vs. U/D

N=3 electrons



WRAP-UP:
Key energy scales & parameters

Bandwidth

Crystal-fields, Distortions
Filling of shell , Doping
Interactions (U,J,...)
Charge-transfer energy

- What are the CONTROL knobs ?




CONTROL.:

Bandwidth

Size of rare-earth
Distortion
Tolerance factor

Chemistry

lonic liquids
Gating

Sr,Ca?* - La, R 3*

3d,4d,5d metal

Tunable dielectric gating ?
Light ?

Change apical
oxygen distance
Change ligand:
O-> S, Se...

Light ?
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