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N.B.: Dans cette partie du cours, je vais introduire
progressivement le modele le plus simple permettant
de décrire la compétition entre blocage de Coulomb et
transport de quasi particules.

Une motivation physique est la physique des points
quantiques dans les 2DEG (blocage de Coulomb et
sa suppression par I'effet Kondo).

La presentation est introductive et ne fera pas justice
aux remarquables developpements réecents de ce domaine

(= voir les experts Grenoblois !
C.Bauerle,W.Wernsdorfer, N.Roch, S.Florens...)




A common thread

through this series of lectures:

Blocking of electronic motion
(and suppression of density fluctuations)

by repulsive interactions
(« Coulomb blockade »)




The simplest atom’
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Eigenstates:
e 0), E=0
® ‘ 1) and ‘ | E = ¢4, doubly degenerate (in zero-field).

Level crossings:
- Between |n=0> and |[n=1>at& =0

- Between |n=1> and |n=2>ate=-U




Occupancy of the isolated atom :
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Plot of ng/2 vs. =4 for U = 2 at 3 = 30 and 3 = 10.




Spectroscopy of the isolated atom

One-particle spectral function, at T=0:

Z| WAldE W) |2 6(w + Eo — Ea) (w > 0)

Z|\\1:B|d |Wo)|?6(w+ Ep — Ey) (w < 0)

e—Bza 4 o—B(2ea+U) i o) 1 + e—Pea 5 | LM regime
Ww—&q—U)+ Nw — &g
Z ! Z ’

g

?ﬁ(w —eqg—U)+ (11— ?}ﬁ(w — &d)

|o) < | 1]) transition] 4 [|o) < |0) transition]




The (Friedel-, Wolff-) Anderson model

- and other "quantum impurity’ models - :
Correlation effects « in a nutshell »

"O God! I could be bounded in a nutshell,
and count myself king of infinite space,
were it not that I have bad dreams !"
William Shakespeare (in: Hamlet)

J.Friedel, Can.J.Phys 34, 1190 (1956)
P.W.Anderson, Phys Rev 124, 41 (1961)
P.A.Wolff, Phys. Rev. 124, 1030 (1961)




The model
H — H C + Hit.t. + H hyb

Conduction electron host (" "bath”, environment)

I d
Ed E RSO  Single-level “atom”

Transfers electrons between bath
and atom — Hybridization, tunneling




“Atom In a bath”




Relevance to physical systems

1. Magnetic impurities in metals

- Low concentration of magnetic atoms, with quite localized orbitals,
into metallic host

- e.g. 3d transition metals (Mn, Cr, Fe) into Au or Cu or Al
4f dilute rare-earth compounds e.g. Ce,La,, Cug (x << 1)
In some cases, all range of solid solution can be studied,
from dilute to dense system (Kondo alloy to Heavy-Fermion regime)




Friedel’s virtual bound-state concept
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Cf. Jacques Friedel Can.J.Phys 34, p. 1190 (1956)
Nuov Cim Supp 7, p.287 (1958)
Varenna school XXXVII, 1966




2. Nanostructures: Many-Body effects on the

Coulomb blockade

A Sepember 195

Schematic of a Quantum Dot:
Single-electron transistor

Autop gales

spacer — ¥ | Semi-insulating GaAs
insulator —— | AlGaAs

bottomback —pme | Heavily doped metal-lke ntype GaAs substratg Dopant-eg., Si

gate

® Negative bias on gold electrodes confines electrons to
narrow channel

e Electrons traveling between source and drain in boundary
layer must tunnel through barrier created by gold “teeth”

® Creates field-effect transistor (FET)

Figure adapted from Meiray, Kastner, and Wind, Phys. Rey. Lett. (1990)
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Coulomb repulsion on the
dot increases as the size
(capacitance) decreases




Extremely simplified model: a slight
modification of the Anderson
single-impurity model (w/ 2 baths)
H = Hgotldo,di]+ > [Vp daps + h.c + Epal,ap
p=L,R 9
Hybridization to the leads J Leads J

Hyot = €4 ) _ngy + Unging

Coulomb blockade on the dot J

Valid for widely separated energy levels on the dot, considering a
single level (NOT correct for a metallic island, OK for 2DEG dots).




Conductance through dot :

Left junction, Kubo formula:
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High-temperature regime T>I" : Coulomb blockade

_|_
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Plot of n; and G vs. g, for U = 2 at 3 = 10.




But...
The atomic limit (V=0) is
SINGULAR

(when the bath has states at low-energy, as in a metal)

The ground-state is actually modified as soon as V#0
and becomes a singlet state (S=0) in which the local

moment has been swallowed’ (screened out) by the

conduction electron bath

- Kondo effect




Exact solution for a single site in the bath:

H — H-a.t. + V Z (t’fl.r d o T d l_ CU)

Conserved quantum N = 0: one state [0) (S =957 =0)
numbers: o .
N S S? N = 1: 4 states, S =1/2,57 = +1/2

1+4+6+4+1=16 states

. one states: | T],T])




Focus on N=2 (ground-state) sector in LM regime:

- The N = 2,5 = 1 triplet sector has eigenstates: | 1, 1), | |, |) and %H [
)+ | 1, T)]- These states are insensitive to the hybridization V' because the

Pauli principle does not allow for hopping an electron through. Hence their
energy 1s £4.

The N = 2,5 = 0 sector is more interesting.
Basis set: | 11,0}, —= [| =11 1101
200+ U V2V 0
The matrix reads: V2V g V2V
0 V2V 0

Symmetric case g,=-U/2 gl - _[I + é : 1 16V2

The ground-state has energy E_. For V < U, this reads:

U 8V?
Ehn=FE_ ~—— — .
0 — 5 U +

Energy in SINGLET SECTOR is lowered by virtual hops

Double occupancy in intermediate state = energy denominator ~ U




Ground-state wave-function: Wo) = V1 —=75%|S) +n|D)

Key points:

e Because of virtual hopping and the Pauli principle, a spin-singlet ground-
state has been stabilized, in which the impurity spin is screened out by
a conduction electron.

e Virtual hopping has induced a (small) admixture of states with ny; =0
and n, = 2 in the wave-function, hence allowing for charge fluctuations
on the atom.

- The atomic limit V=0 is SINGULAR in the LM regime

- Anon-zero V lifts the ground-state degeneracy
- The ground-state becomes a singlet: the impurity moment is

“screened” by binding w/ a conduction electron




Suppression of the Coulomb blockade
by the Kondo effect at low-T:
Wave-function interpretation (qualitative)

Virtual transitions create admixture of components with
0 or 2 electrons on the dot in the wave-function.
- Restoration of charge fluctuations

- Conductance (transmission) takes maximal possible value 2e2/h

To) = /1 — P |S ) + 7 |"D ) Lwith g~ g < 1




Kondo effectina
single-electron transistor

D. Goldhaber-Gordon*f, Hadas Shtrikmant, D. Mahalu?,
David Abusch-Magder*, U. Meiravi & M. A. Kastner*

NATURE |VOL 391 |8 JANUARY 1998

See also: D. G-G et al. PRL 81 (1998) 5225

—_— 1 BN m F1 L#A1
SH=-HIS 1aKL Arn., B85

Orders of magnitude:
U~1.9 meV

[~ 0.3 meV

Range of T:

40mK - 2,5 K




conductance (e2/h)
}—\

gate voltage

(@) The conductance (y-axis) as a function of the gate voltage, which changes
the number of electrons, N, confined in a quantum dot. When an even number
of electrons is trapped, the conductance decreases as the temperature is
lowered from 1 K (orange) to 25 mK (light blue). This behaviour illustrates that
there is no Kondo effect when N is even. The opposite temperature
dependence is observed for an odd number of electrons, i.e. when there is a

Kondo effect.

W G van der Wiel et al. 2000 The Kondo effect in the unitary limit Science 289
2105-2108




2 Spin flips

initial state virtual state final state b density of states

smmetnnn
u

(@) The Anderson model of a magnetic impurity assumes that it has just one electron level with energy ¢, below the Fermi energy of the metal (red). This level is
occupied by one spin-up electron (blue). Adding another electron is prohibited by the Coulomb energy, U, while it would cost at least |¢,| to remove the electron.
Being a quantum particle, the spin-up electron may tunnel out of the impurity site to briefly occupy a classically forbidden “virtual state” outside the impurity, and
then be replaced by an electron from the metal. This can effectively “flip” the spin of the impurity. (b) Many such events combine to produce the Kondo effect,
which leads to the appearance of an extra resonance at the Fermi energy. Since transport properties, such as conductance, are determined by electrons with
energies close to the Fermi level, the extra resonance can dramatically change the conductance.




Nature of the strong-coupling fixed point
and Its vicinity:
singlet formation and local Fermi liquid

Anderson, Wilson, Nozieres, ...

- Singlet ground-state formed between impurity spins and conduction electrons
(cf. one conduction orbital calculation)

- Seen from the conduction electron viewpoint:

N sites > N-1 sites (impurity site inaccessible) 2




week ending

PRL 113, 126601 (2014) PHYSICAL REVIEW LETTERS 19 SEPTEMBER 2014

Transmission Phase in the Kondo Regime Revealed in a Two-Path Interferometer

S. Takada "C. Bduerle M Yamdmoto K. Watandbe S. Hermelln T, Meunler P A Alex,5

A. Welchselbdum J. von Delft A. Ludwng, A.D. Wleck and S. Tarucha"”'
Department of Applied Physics, University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
Umverme Grenoble Alpes, Institut NEEL, F-38042 Grenoble, France
’CNRS, Institut NEEL, F-38042 Grenoble, France

Tunnel-coupled
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The conduction electrons viewpoint:

Total scattering cross-section ~(Im T ~ V2 A (w) - “optical’ theorem

- Need to understand spectral function of impurity orbital

Conduction electron phase-shift defined by:

Tiw (w +i0T) = — |Tige| € )

Note: at particle-hole symmetry: T (and G,) is purely imaginary - 0 =m/2




LM case (6=11/2): Conduction electron density of states vanishes at the
iImpurity site
From the above expression:

> ImGpp (i07) = —mpo [1 — 7L Aq(0)]
kk’

. 1 Special case of Friedel’s
['=7nV"py Hence: | A4(0) = | sum e

Thus, the spectral function of the impurity must grow a resonance
around zero-energy (Fermi level of the electron gas)
= Abrikosov-Suhl resonance

Formation of the resonance as a tunneling process between
spin-up and spin-down states - on board




Numerical Renormalization Group (NRG) calculation
T.Costi and A.Hewson, J. Phys Cond Mat 6 (1994) 2519

—-=- T/T,=0.85

0.0 =
-10.0 -5.0 0.0 5.0 10.0
~ -U/2 /A ~ +U/2

Low energy associated with
the resonance and quasiparticle excitations:




Magnetic impurities in metallic host: contribution to resistivity

ol o0 Fooapen
e )
/ dw T, (w, 1) (—_,_}‘ ) Kubo formula for c-electrons
m J_ . | " ow
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Unitary limit resistivity :
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Contrast to TRANSMISSION: maximal conductance (1/A 2> Al):
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Impurity contribution to resistivity :
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Conductance (cont'd)...

Specialize to L-R symmetric device, for simplicity:

{__} L)

) f _. __
— ] mlAy(w, T)

R'u.
Ezim p t T) B

J

2- 2 ~ A Landauer formula generalized to tunneling into an interacting system
A (w,T) plays the role of transparency of barrier

3- Generalization to out of equilibrium, e.g. I(V) for finite voltage

Is an outstanding problem. General formula based on Keldysh has been
Derived (Meir and Wingreen, PRL 68 (1992) 2512) but concrete calculations
Difficult ! Numerous recxent works (Saleur et al., Andrei et al.) — an active field




Magnetic impurities in metals:
resistivity minimum

De Haas, de Boer

and van den Berg,

Physica 1 (1934) 1115

""The resistivity of the gold wires
measured (not very pure) has a
minimum.”




The Kondo effect :
contribution of magnetic impurities to resistivity
Increases as T is lowered !

De Haas, de Boer

and van den Berg,

Physica 1 (1934) 1115

“"The resistivity of the gold wires
Measured (not very pure) has a
Minimum.”

AuV, 6 =280K

Impurity contribution to resistivity of _Znfe, 6 =80 K
different alloys, plotted against reduced
temperature scale.

[After Rizzuto et al. J. Phys F 3, p.825
(1973) ]

Note wide range of 6, defined from low-T:

p/po = 1—(T/0)* +

YCe, 8 = 40K

,Cufe, 6 = 2| K




An experiment contemporary to Kondo’'s paper and
demonstrating that the effect comes from Fe-moments :

PHYSICAL REVIEW VOLUME 135, NUMBER 4A 17 AUGUST 1964

Resistivity of Mo-Nb and Mo-Re Alloys Containing 19, Fe

M. P. SaracHik, E. CorENzwiIT, AND L. D. LoNGINOTTI
Bell Telephone Laboratories, Murray Hill, New Jersey
(Received 19 March 1964)

The resistivity of a series of Mo-Nb and Mo-Re alloys, with and without 1%, Fe, has been measured at
room temperature, and between 1.5 and 77°K. Large effects are observed near the alloy composition where
the iron acquires a localized magnetic moment. These effects appear both as an excess temperature-inde-
pendent scattering and in the form of large anomalies at low temperatures. Interpreted in the light of current
theories of localized moments, the resistivity results confirm the existence of virtual bound states near the
Fermi level. In addition, the anomalous behavior of the resistivity at low temperatures has been directly re-
lated to the existence of a localized magnetic moment,




[

Nole added in proof. A recent theory by J. Kondo
[Progr. Theoret. Phys. (Kyoto) (to be published) ] pre-
dicts that a minimum exists whenever there is a negative
s—d exchange integral. This theory gives the observed
linear dependence on concentration, and apparently
| gives the correct temperature dependence. I would like
Mo re [to thank Dr. Kondo for sending a preprint of his work
Fic. 1. Magnetic moment of an iron atom dissolved in various prior to pUblicatiOn-

Mo-Nb and Mo-Re alloys as a function of alloy composition,
according to Clogston ef gl

n
]

MAGNETIC MOMENT PER IRON
ATOM IN BOHR MAGNETONS, p/itg
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Kondo’s
Resistance minimum:

RESISTIVITY,
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TEMPERATURE, °K

Fio. 3. Resistivity vs temperature for various Mo-Nb alloys containing 195 Fe. Resistivities are normalized at 4.2°K.




The Kondo effect from
the small V
(I'<<U) perspective




Effective Hamiltonian at small V: the Kondo model

1-site: low-energy Hilbert space ={ground-state + triplet S=1}

Sd, Sc: spin operators

Can be generalized to a full conduction electron band:
(Schrieffer-Wolff transformation —eliminating states w/ nd=0,2) -1966-




Expansion in the Kondo coupling (~I'/U):
singularities

Not surprisingly in view of the above, the perturbative
A expansion in J is plagued w/ singularities
Jun Kondo (when the conduction electron bath is metallic - gapless)

The original calculation by Kondo deals w/ the resistivity,
in which the log’s appear at 3™ order:

9 |- _ T
Ril‘ﬂp X |: J K fi},_.]# 1—2J KP [n 5 + -

- Hints at an explanation of the "resistance minimum
(R increases as T is lowered)

T —1/(Jgp
- Perturbation theory FAILS BELOW a characteristic scale : [ iai 2/l Jrcp)

“"Kondo temperature”




NB: In those RG slides J is dimensionless J=> J p,
Scaling and the Renormalization Group

RG approach: integrate out (recursively) only over high-energy conduction
electron states, and reformulate the result as a new Hamiltonian

with a scale-dependent coupling.

D,

)
Lod = J 0 — D

Define scale parameter:

Flow to
Lowest order:




RG flow: AF model flows to strong coupling

Coupling becomes large at

D(lg) ~ Tx ~ De™ Y/ Jrro

.PJL

FM Kondo | AFM Kondo

J
~ 1+ JI[D(})/D]







Low-T physics: fixed point+leading
irrelevant operator = Fermi liquid

This is best described using a one-dimensional description of fermions,
associated with s-wave (I=0) channel. Cf. Affleck, arXiv:0809.3474

Kondo Hamiltonian: R- and L-movers on r>0 half-axis

.rT —
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Hamiltonian close to fixed point:
Impurity degree of freedom is GONE !
Fermions have undergone a n/2 phase-shift, i.e a change of b.c
Operators at fixed point:
1) Amarginal one gFREI{IEEM() - Potential scattering,
| m forbidden by p-h stry in stric case
2) Two leading irrelevant ones of dimension 2, i.e. <O(0)O(t)> ~ 1/t4

J(0)2 and J(0)2

Only second one has a sizeable coeff (~1/Ty, not 1/D)

Effective hamiltonian at s.c. fixed point:

Note: coefficient in front of 2" term specifies a convention for defining T




Characteristic behavior
of Fermi-liquid

2nd term (LIO) is small and can be treated in perturbation theory,
as a weak scattering term:

Physical quantities at low-T:

Wilson ratio:

_ Ximp/XcO _ 4_7-‘-2Ximp

= = 2
/Vimp/fYcO 3 Yimp

In which p, is the maximal possible resistivity induced by an impurity
(unitary limit):




Scaling of G(T)/G(0) vs. T/Ty

06} 4 & =-074, =280 peV
> * &g ==0.91
= gp=-1.08
0.4F

&p =098, T'=215peV

0.2t — & =-1.00, NRG results
=-gg= 0.00

1

10

FIG. 4. The normalized conductance G=0G /Gy is a univer-
sal function of T = T /Tk. independent of both &, and I'. in
the Kondo regime. but depends on &; in the mixed-valence
regime. Scaled conductance data for &, == —1 are compared
with NRG calculations [13] for Kondo (solid line) and mixed-
valence (dashed line) regimes. The stronger temperature de-
pendence in the mixed-valence regime is qualitatively similar
to the behavior for &, = —0.48 in Fig. 3(b).
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FIG. 5. (a) Fit values of Ty for data such as those in Fig. 3
for a range of values of ey [22]. The dependence of T on
€p 1s well described by Eq. (1) (solid line). Inset: Expanded
view of the left side of the figure, showing the quality of the fit.
(b) Values of Gy extracted from data such as those in Fig. 3 at
a range of €. Solid line: Golen) predicted by Wingreen and
Meir [4]. Guax = 0.49¢? /h for the left peak. and 0.37¢*/h for
the right peak.




From small U/I' to large U/’
- a smooth evolution -

* In contrast to the expansion in the
hybridization (I'), the expansion in U is
perfectly fine and smooth.

* Local Fermi liquid theory naturally
emerges

 Pioneers: Yamada and Yosida




The non-interacting case (U=0)

- A different point of view, offered by the Anderson model
(not available for Kondo model)

- In contrast to the V-expansion, small U and large U are smoothly
connected.

Hy—g = E Sk '-"—'-'-Lg‘-"—'fkr:r + &4 E dl d, + E Vil (_'..'.]kg dy + d! ey, )
ko o

ke

“Integrating out” c-electrons,
or simple diagrammatics,
or egs of motion




Case of a broad band w/ structureless d.o.s:
(Note: the integrable case, by Bethe ansatz, for arbitrary U)

- ,' 'J . fors €

i

Aiwn) T | (D~ infinity)

A(w +1i07)

“Virtual bound-state’ resonance
Width given by Fermi’s Golden rule

No Coulomb blockade. of course
Goes smoothly from n=0 to n=2




 How does one interpolate from U/['=0 limit
(1 broadened atomic level centered at ¢)

to atomic limit '/U=0 ?

(2 sharp peaks corresponding to atomic transitions,
Doubly degenerate local-moment ground-state)




General many-body theory and (local)
Fermi-liquid considerations

Focus on dynamics of impurity orbital: integrate out conduction electrons
—> Effective action for impurity orbital:

also reads:

S, at + SYh\ b

,"_'3'
{ 1 (1) [ ——=— d(7)+ U ITnn
/(TZ( ( C)T—l— d) -7)+ /O( nimn|
/(lr/ dr' Y di(r




Feynman rules associated with this action (involving only time):
- Avertex U (local in time)
- A bare’ propagator (retarded): f@




d-level spectral function, wide bandwidth limit, Fermi-liquid considerations:

Height unchanged !




Numerical Renormalization Group (NRG) calculation
T.Costi and A.Hewson, J. Phys Cond Mat 6 (1994) 2519

—-=- T/T,=0.85

5.0 0.0 50  10.0
~-U/2 ~+U/2




The T-matrix, at T=0 and w=0 (wide bandwidth):

phase shift
at T=w=0

A4(0) pinned at its U=0 value in
symmetric case !
Im T takes maximal value

—> Unitary limit scattering

Local d.o.s of conduction electrons at w=0: [ERENENE S [ENIRRUEIE)

’ ~ -~ J— v~k - S B . . .
Aw=0T=0)=—-"Im» G = p.(1-sin’s) ERERCHRICRNR Al

kk' - N y
case - Kondo screening hole




Friedel’'s sum-rule
(valid at T=w=0, wide bandwidth)

Exact relation between
the phase shift and the occupancy of the atomic orbital !

T T
2

5 —

Why is this remarkable ?
- Phase-shift is a low-energy property (Ad(0))
- Occupancy integrates over all energies (integral of Ad overw<0)

Non-perturbative proof : see later — or see bibliography
(in the context of the AIM: Langreth, Phys Rev 150 (1966) 516




Friedel’'s sum-rule: non-perturbative proof (sloppy about contours...)

Friedel sum-rule

Wide bandwidih case. Non-perturbative proof, walid for T = 0.
Note: sloppy about contours and preseription for G.F.
We consider the Green's function G5 w) = w — g4+ il — E(w)

d gy
——InGlw) = |1 — (7w
5[,.__' ':'llln. ¥ [ EJ_,_,.'] '.'i:l!. ¥
and use:

g

J- Fooy
—— | dwCqlw) =2
ﬂ- s I'_-\' e

Hence, integrating the above relation:

T g
5

i

) i)
= InGilw=0 —InGa{w — —cc) + / dw — Galw) (1.61)
. |'_'\l Iﬂl_-_.-'

The last term will be shown to vanish, so that we get (remember Imds, < 0,
definition of phase shift, and using a branch-cut of the In on the negative
real axis):
T™Ma o
3 =ld =) —1—"0

s0 that the oceupancy of the d-orbital and the phase-shift are related by
2

Ng = — 0 (1.63)
™

|
¥

A manifestation of Friedel’s sum-rule in this context. This derivation for the
AIM is due to Langreth.




To prove that the last term vanishes, we integrate it by part:
(1.64)

and observe that the self-energy is obtained from the Luttinger-Ward func-
tional as: o
. D[]

Ylw) =

S )
=0 that the above reads:

A AW

90 5]
[d;,- ik G Y (1.66)
JO

This is the change of the LW functional when all frequencies are shifted.
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“'No Hamiltonian so incredibly
simple has ever previously done
such violence to the literature and

to national science budgets”™

Attributed to Harry Suhl by P.W. Anderson
in his 1978 Nobel lecture
[Rev Mod Phys 50 (1978) 191 p. 195]

[Although the Ising model is surely a serious competitor...]




