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7 mai 2019 Séance de cours
Séminaire : “Were fermions born under a bad sign ?”
Michel FERRERO, CPHT-Ecole Polytechnique et College de France

14 mai 2019  Seéance de cours
Séminaire : “Nonequilibrium extensions of dynamical mean field theory”
Philipp WERNER, universite de Fribourg, Suisse

21 mai 2019  Seance de cours
Séminaire : “Excitonic condensation of strongly correlated electrons”
Jan KUNES, TU-Wien and Czech Academy of Sciences, Prague

Mercredi 22 mai (exceptionnel) Séminaire par Andrew J.Millis — 11h00, Salle 5

28 mai 2019 Deux séances de cours

4 Juin 2019 Pas de cours (2 conférences a Paris)




11 juin: Cours, Séminaire
et Collogue/\Workshop

11juin 2019  Séance de cours
Séminaire ; “Unifying spin-fluctuations and DMFT: TRILEX and vertex-based methods”
Olivier PARCOLLET, Flatiron Institute, New York et IPhT, CEA-Saclay

Collogue le mardi 11 juin 2019 de 14h a 18h30
5 séminaires - Salle 2
“Dynamical Mean Field Theory and Beyond: Recent Developments”

Orateurs : Manuel ZINGL, Jernej MRAVLIE, Hugo STRAND, Alessandro TOSCHI, Malte ROSNER




June 11 workshop - program

Dynamical Mean-Field Theory and Beyond:

Recent Developments
(Talks are 30’ plus 15’ discussion)

14:00-14:45 Manuel Zingl (CCQ, Flatiron Institute). Recent insights on Sr.RuQO4: High-
resolution photoemission and Hall effect

14:45-15:30 Jernej Mravije (JozZef Stefan Institute, Ljubljana). Hund’s metals: overview, NRG
insights, and the role of spin-orbit coupling

15:30-16:15 Hugo Strand (CCQ, Flatiron Institute). Magnetic response of a Hund's metal
within DMFT: Sr.RuO4

16:15-17:00 Break

17:00-17:45 Alessandro Toschi (IFP — TU Wien). Fluctuation diagnostics of many-electron
systems: How to read between the lines of single-particle spectra

17:45-18:30 TBA
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Julich Autumn School on Correlated Electrons
Book series — available as free eBooks

The LDA+DMFT approach to strongly correlated materials DMET at 25: Infinite Dimensions o .
Eva Pavarivi. Erk Koch. Dieter Vollhardt. and Alexander Lichie Eds : e ey DMFT: From Infinite Dinf\ensio.ns to Real Materials

Eva Pavarini, Erik Koch, Alexander Lichtenstein, and Dieter Vollhardt (Eds.)

(Cp— 9 souch B G 4) JiLicH

https://www.cond-mat.de/events/correl.html
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The "Quantum Many-Body’

Research Agenda — Born 1929 !

714

- Quantum Mechanics of Many-Electron Systems.
By P. A. M. Dirac, St. John’s College, Cambridge.

(Communicated by R. H. Fowler, F.R.S.—Received March 12, 1929.)

§ 1. Introduction.

The general theory of quantum mechanics is now almost complete, the
imperfections that still remain being in connection with the exact fitting in
of the theory with relativity ideas. These give rise to difficulties only when

P. A. M. Dirac, "Quantum Mechanics of Many-Electron Systems®,

Proceedings of the Royal Society of London, Series A, Vol.123,
April 1929, pp 714.




Paul Dirac, 1929
““Quantum Mechanics

of Many-Electron Systems’’

is now almost complete (...).
The underlying physical laws necessary for th
mathematical theory of a large part of physics My =
and the whole of chemistry
are thus completely known,
and the difficulty is only that
the exact application of these laws

“"The general theory of quantum mechanics | I
e

leads to equations much too complicated to be soluble."

P. A. M. Dirac, "Quantum Mechanics of Many-Electron Systems®,
Proceedings of the Royal Society of London, Series A, Vol.123,
April 1929, pp 714.




Quantum Mechanics of 1021
Interacting particles !

H = QH; va + szon(f)@)‘F

H\Ij(rlan' 7TN) :E\Ij(r17--- 7TN)

Eigenstates (wave-functions)
and Eigenvalues (Energy spectrum)




‘Dirac’s program’ (same 1929 article):

It therefore becomes desirable that

- approximate practical methods of applying
quantum mechanics

should be developed, which can lead
to an explanation of the main features
of complex atomic systems

without too much computation.”

Dirac’s program is not yet fully implemented
but key progress has been made.
Note that —without too much computation” has
an entirely different meaning now than in the 1930’s ©




Why are interacting fermion
systems hard problems ?

* Exponential size of the Hilbert space ~
exp(10%3)

- Exact diagonalisation only handles (very) small systems

 Alternating sign of fermionic quantum-
mechanical amplitudes

—>(Direct) Quantum Monte-Carlo is in trouble

—->See seminar by Michel Ferrero

Continuous progress in algorithms and computational
methods: a crucial line of research !




Why Is diagonalizing the Hamiltonian
(very) hard 7?

Consider a simple’ model: a chain of N electrons, which
are localized so the only remaining degree of freedom is
their spin — can take two values on each site

Basis of configuration space:

‘0-17'”70-N> y O¢ = 1
2N states | Grows exponentially in N...Try thinking of Exp[102'] ...

State vector (wave-function):

W) = ) Copon|01, 0N

0'1 oo .O‘N
Storing it is already very hard, let alone computing it...




From particles... to spins in a line




In Quantum Mechanics, the
Hamiltonian is an operator

acting on these state vectors
Heisenberg Model:

Ho=JY 8:Si, + Juy [SFSh + 85,57

S*loy =olo) , ST|=)=1+) , STI+) =|-)

With only J-term: energy spectrum easy to evaluate
classical Ising)

With second term: diagonalization of a 2N*2N (sparse) matrix

Model is directly relevant to (quantum) Magnets




Energy matrix (Hamiltonian ) acts on space of all configurations

N = 2 example

(O U
ol 1
2 1 -1
H = ?T 11
| %




Energy matrix (Hamiltonian ) acts on space of all configurations

N = 3 example

(0 U B s A S NS A
1] -2
N 0 -
11 12 -1
Tt 0
L 3 0
W -1 2 -
Lt 10
Ol 2

N=4 case can hardly fit on slide...




Efficient algorithms for evaluating
eigenvectors of sparse matrices
e.g. Lanczos

Current record, using symmetries and many tricks

50 spins !

... hot quite 102




PHYSICAL REVIEW E 98, 033309 (2018)

Sublattice coding algorithm and distributed memory parallelization for large-scale exact
diagonalizations of quantum many-body systems

Alexander Wietek " and Andreas M. Liuchli
Institut fiir Theoretische Physik, Universitct Innsbruck, A-6020 Innsbruck, Austria

®™ (Received 18 April 2018; published 26 September 2018)

We present algorithmic improvements for fast and memory-efficient use of discrete spatial symmetries
in exact diagonalization computations of quantum many-body systems. These techniques allow us to work
flexibly in the reduced basis of symmetry-adapted wave functions. Moreover, a parallelization scheme for
the Hamiltonian-vector multiplication in the Lanczos procedure for distributed memory machines avoiding
load-balancing problems is proposed. We demonstrate that using these methods low-energy properties of systems
of up to 50 spin-1/2 particles can be successfully determined.

DOI: 10.1103/PhysRevE.98.033309




Simplest « toy model » with mobile electrons:
The Hubbard model (Hilbert space: 4N)

_ty Y cwcjg+hc — Uanan

(ig) o=T:4

4 states per site: |O>, ‘ >, | >, ‘ T¢>

t: Tunnel amplitude (electron hopping between sites)
U: On-site matrix element of screened Coulomb interaction




Despite its simple formulation
the Hubbard model
Is far from being solved’

and even qualitatively understood
Except In some cases such as:

- ONE spatial dimension
- INFINITE spatial dimensions
Especially relevant: d=2

The Hubbard model plays a somewhat similar role
for many-body quantum physics
to that of the Ising model in classical statistical mechanics
And we are living in pre-Onsager days (< 1942)...




| The Hubbard model

IS no longer only
a Toy Model !

A new frontier
at the Iinterface
of Condensed Matter Physics
and Quantum Optics:

Ultra-Cold Atomic Gases

iIn Optical Lattices



Ultra-Cold Atomic Gases

quuid liquid this sun (center)

l. ipmal molasses l N, room sun (surface)
I K 100K 10K 106K

COOLING

Nobel 2001 Nobel 1997
E. Comell, W. Ketterle, C. Wieman S. Chu, C. Cohen-Tannoudji, W. Phillips




The Hubbard model can now be realized using
guantum optics techniques !

A new frontier: cold atoms in optical
lattices: «artificial crystals of atoms
and light »

D.Jaksch et al.
PRL, 1998




Cold Atoms and Condensed Matter Physics:

very different characteristic scales

_ Cold Fermionic atoms |Electrons in a solid

Density
Mass

Fermi Temperature
Temperature
Charge
Interactions

Potential shaping

Slide: courtesy
J-P Brantut

102 cm-3

6 (Li), 40 (K)

pK

100 nK

O

Contact, tunable

Laser light

1022 cm3 (Metals)

5.4 10%

104 K

10 mK

-1

Coulomb, material dep.

growing, lithography



Highly controllable systems:

- Interaction strength (U) can be tuned
(e.g. through Feshbach resonances)

- Hopping (t) can be tuned by changing lattice
depth (laser intensity)

-Geometry of lattice can be changed
- Controlled time-dependent perturbations

- BUT... still quite hot’: T~t/5 ~a few nK
(aka room temperature in the solid-state!)




Experimental observation of the Superfluid to
Mott insulator transition for cold bosonic atoms

Quantum phase transition from a|- @
superfluid to a Mott insulator in ; iF
a gas of ultracold atoms

Markus Greiner*, Olaf Mandel*, Tilman Esslinger, Theodor W. Hansch* & Immanuel Bloch*

NATURE |VOL 415 |3 JANUARY 2002

Phase coherence between
in superfluid phase
>interference pattern

Momentum distribution for
different Potential Depths




A Mott insulator
IS an
Incompressible
state of matter




How to make progress ?

* 1. Approximations — In best cases: sequence
of approximations that will converge (at lest in

principle) to the exact answer

- Dynamical Mean-Field Theory’ and
‘Embedding Methods’

» 2. Find clever ways of doing Quantum
Monte Carlo = ‘Diagrammatic QMC’

» 3. Data compression methods for the full
wave-function =2 Tensor Networks’




Computational Quantum
Physics and Chemistry

Computational methods for many-body
guantum systems have seen considerable
progress in the last ~ 30 years

Moore’s law increase in computing power is
not the main reason for these advances

RATHER:
New algorithms
New Concepts and Approximations




More Physics Motivations

Materials with Strong Electronic
Correlations




lead to
COLLECTIVE EFFECTS

;; > VI vion(F)+

Wave-function NOT well approximated
by a single Slater determinant (~product): ENTANGLEMENT
- CORRELATIONS between particles

H\P(Tla'” 7TN) :E\Ij(rlau' 7TN)




Approximation of (quasi)
iIndependent electrons

\P(Tl,”' ,’I”‘N) i Det [¢V7;(Tj>]

(27]:17 7N)

The many-body wave-function is
approximated as a product of single-particle Bloch waves
(antisymmetrized - Slater determinant)

Works OK for many materials, but here we
shall focus on those for which this approximation FAILS !




Materials with Strong Electron
Correlations do "BIG THINGS”

Because of the strong interdependence
of electrons, collective phenomena take

place

Such as: metal-insulator transitions,
magnetism, superconductivity, etc.

- Interesting functionalities

- Fundamental questions in physics
and chemistry
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Which Materials display

“Strong Electronic Correlations’ ?
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Who are the suspects ?
Localized orbitals !

s

d- or f- orbitals are quite close to ions nuclei
(particularly 3d and 41, for orthogonality reasons)

They do not behave as regular band-forming orbitals
(e.g sp-bonding) and retain atomic-like aspects

> Electrons “hesitate” between
localized and itinerant behaviour !

Materials: transition-metals and their oxides,
rare-earth/actinides and their compounds, but
also some organic materials
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and, for 8.5K, from sublattice magnetization. This boundary
line separates two regions of inhomogeneous phase coexistence
(shaded area).
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Why do we need to go
beyond (effective)
one-particle descriptions 7

Why DMFT ?




lllustrate this on a simple case:
2 filled Hubbard model on cubic lattice

T/6t
Mott gap

| PARAMAGNETIC
CORRELATED | MOTT INSULATOR
) .
I

0.20'

LIQUID of fermions (Incompressible)

YAt

From: A.G. DMFT@25 book;
Crossover lines are indicative (not quantitative)




Please note:

Ordered phase: Crossover from Slater-lik
antiferromagnet to localized Heisenberg AF

Phase w/out long-range order:

Weak-coupling: Crossover corresponding to the
formation of coherent quasiparticles

Strong coupling - Two crossovers:

- Opening of Mott gap ~ U

- Onset of magnetic correlations ~ J=4t4/U

At strong coupling, the onset of Mott insulating

regime (incompressible w/ local moments) has
nothing to do with magnetism




Hence, 6 distinct regimes:
Soup

PARAMAGNETIC

/et Mott Insulating

0.20 Paramagnet

LIQUID of fermions (Incompressible)

CORRELATED %, 1 Morrwsuwor - (Fluctuating
O
I

Local Moments)

Y0444t
v A4

<:>-w'—44_14 A
$N—A4A-O
\ - Mott

. Insulator
ANTIFERROMAGNETIC with short- range
INSULATOR )
AF correlations

~ Slater AF ~ Heisenberg AF

Ordered Mott Insulator




The Mott phenomenon

at strong coupling (U >> 1)
HAS NOTHING TO DO

with magnetism
It is due to blocking of density/charge

Energy scale for magnetism: superexchange J ~ t?/U
Insulating gap: ~U>t>>J

The system is basically an insulator
even well above Ty

Ex: MANY oxides, e.g. NiO, YTiO,, cuprates etc...

In contrast, LDA+U needs to assume ordering
to describe the insulator




OBSERVABLES

Since we want to also understand crossovers, we
cant just rely on (static) order parameters

Need to address nature of excited states (especially
low-energy)

Green’s function
Spectral Function
Relation to photoemission experiments

Two-particle response functions: charge, spin,
current, etc...




In materials with strong

correlations
LOCAL ATOMIC PHYSICS

IS cruclal




Electrons “hesitate”
between being localized
on short-time-scales
and itinerant on long time-scales

We see this from spectroscopy...




Mott insulators :
Their excitation spectra contain atomic-like excitations

Band structure calculations (interpreting Kohn-Sham spectra
as excitations) 1S 1N serious trouble for correlated materials !

Binding Energy {(eV)
Metallic LDA (KS)
spectrum ! Photoemission: Fujimori et al., PRL 1992




A Hubbard satellite” is nothing but

an atomic transition
(broadened by the solid-state environment)

Imagine a sitmplified atom with a single atomic level

A

5

U: Coulomb energy @

For placing 2 electron%nergy
on same level




Note: Energetics of the Mott gap
requires an accurate description
of the many-body eigenstates

of single atoms
(multiplets’; U,d,,...)




Correlated metals: atomic-like excitations at
high energy, quasiparticles at low energy

- Narrowing of quasiparticle SrVO, (a)
bands due to correlations (the Bulk V 3d:
Brinkman-Rice phenomenon)

- Hubbard satellites (1.¢

extension to the solid of

atomic-like transitions)

Dashed line:

Spectrum obtained from
Conventional
band-structure methods (DFT-LDA)

Sekiyama et al., PRL 2004




From weak to strong
correlations in d! oxides

[Fujimori et al. PRL 69,
1796 (1992)]

Puzzle:

Why is SrvVO,

a metal

and LaTiO;, YTiO;
Mott insulators ?

Intensity (arb.units)

U / W << 1

Ug / W > 1

N | YTiO,

2 1 0 -1
Binding Energy (eV)




A theoretical description of the
solid-state based on ATOMS
rather than on an electron-gas picture:
« Dynamical Mean-Field Theory »

Dynamical Mean-Field Theory:
A.G. & G.Kotliar, PRB 45, 6479 (1992)

Correlated electrons in large dimensions:
W.Metzner & D.Vollhardt, PRL 62, 324 (1989)

Important intermediate steps by: Miller-Hartmann,
Schweitzer and Czycholl, Brandt and Mielsch, V.Janis

Early review: Georges et al. Rev Mod Phys 68, 13 (1996)




Dynamical Mean-Field Theory:

viewing a material as an (ensemble of) atoms coupled to a
self-consistent medium

Solid: crystal lattice of atoms

Correlated electrons in large dimensions: W.Metzner & D.Vollhardt, 1989
Dynamical Mean-Field Theory: A.G. & G.Kotliar, 1992




Example: DMFT for the Hubbard model (a model of coupled atoms)

R
H = — Z tRR/dI{adea T ZHatom
RR/ R Hiiom = Sdan + UnTn¢

Focus on a given lattice site:
“Atom” can be in 4 possible configurations:|0), | ), | 1), | TI)

J

Describe "history” of fluctuations between those configurations

0) 1)

o ml D=0

°f

el |

Electron reservoir



Imaginary-time effective action
describing these histories:

3
.:*d> d(7)+ U / drnn
0

The amplitude A(t) for hopping in and out of the selected site
Is self-consistently determined: it is the quantum-mechanical
Generalization of the Weiss effective field.

Effective "bare propagator’




Hamiltonian formulation: Anderson impurity model

Hy = cq y dids + Unin|
a

Transfers electrons between bath
and atom — Hybridization, tunneling




Local effective action:

Focus on dynamics of impurity orbital: integrate out conduction
electrons - Effective action for impurity orbital:

= W + H— A(zw) Effective bare propagator’




Focus on energy-dependent local observable :

GRR (w) — Gloc

On-site Green’s function (or spectral function) of the "solid’

Use atom-in-a-bath as a reference system to represent this
observable:

- IMPOSE that €4 and A should be chosen such that:
Gimp [w§ Ed, A(w)] — Gloc (W)

At this point, given G, of the lattice Hubbard model,
we have just introduced an exact local representation of it




GRgR Is related to the exact self-energy of the lattice (solid) by:

In which &£ L 1s the tight-binding band (FT of the hopping tgr:)

Let us now make the APPROXIMATION that the lattice

self-energy is k-independent and coincides with that of the
effective atom (impurity problem):

This leads to the following self-consistency condition:

imp[’iw; Al = Z

k




The self-consistency equation and the DMFT loop
Approximating the self-energy by that of the local
problem : 3} (k, w) ~ ¥, (w)

—> fully determines both the local G and A:

moliw; Al =3 .

Kk Gimp[iw; A]_l —+ A(zw) — €k

Ei‘};%T
Gimp (@)

SELF-CONSISTENCY CONDITION




