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III.2 Systèmes mésoscopiques:  
coefficients thermoélectriques dans le 

formalisme de Landauer-Büttiker  
et quelques exemples  



Mesoscopic’ Systems: Some Examples 
Images: Courtesy  
G.Montambaux 



Mesoscopic Systems : Lengthscales 

(10-103 nm) 

(~103 nm ~ 1µm) 



Cf. Beenakker and van Houten, arXiv:cond-mat 0412664  



Courtesy: Tilman Esslinger, ETHZ 

BALLISTIC TRANSPORT 



Elastic scattering (impuritiesà random potential): diffusive regime 

See use of specle in experiments by: Aspect, Inguscio, Hulet, DeMarco  



What is the conductance of a 
perfectly ballistic conductor ? 

Is it infinite ?  
Classically (Ohm’s law + Drude) : 



Conductance = Transmission 

A wave-like description of transport 

Rolf Landauer  
(1927 Germany - 1999 USA) 
IBM fellow 

Author in particular of: 
-  The `Landauer principle’ (1961) 
(dissipation associated with the  
Irreversible manipulation of information) 
-  The Landauer formula (1957) 
Description of quantum transport  
as transmission  



The Landauer formula 
Conductance as Transmission 
- Case of a single conduction `channel’ - 



A simple derivation (1-channel) 
à Notes on College de France 
website (2013-2014 lectures) 



Where does the potential drop ? 
The `two’ Landauer formulas… 

Contact Resistance 
(cf. Imry, 1986 ) 

2-probe vs. 4-probe conductance 



Contact resistances 

Channel resistance:  



Contact 1 + CHANNEL + Contact 2 = Total  

Original 1957  
Landauer formula 

Note: Channel conductance à Infinity for perfect transmission 

Landauer formula 



Nature 411, 51 (2001)  

Slide: courtesy 
G.Montambaux 



2-terminal  
conductance 
is quantized 

4-terminal  
Conductance 
is infinite 



Anticipating on the following lecture:  
ballistic transport in cold atomic gases 

Ballistic 
Diffusive 



Generalization of the Landauer  
formula to thermoelectric 

transport 
 

Thermal: HL Engquist and PW Anderson Phys Rev B 24, 1151 (1981)   
 

Thermoelectric effects:  
U.Sivan and Y.Imry Phys Rev B 33, 551 (1986) 
P.N. Butcher J. Phys Cond Matt 2, 4869 (1990)  



Particle, Energy and Entropy 
Currents 

For a detailed discussion, see notes  



Reconsidering the entropy current… 



Linear Response  
Regime: 



Conductance, Thermopower and Thermal Conductance: 

Dimensionless integrals: 
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Different coefficients probe different range of energy: 
-  Conductance probes the immediate vicinity of EF,  
in a symmetric way for particles and holes 
-  Thermopower probes a difference between contributions from  
holes (>0) and particles (<0). It vanishes if particles and hole  
have the same transmission.   
- Thermal conductance probes a few kT from EF 



Low Temperature expressions  
(from Sommerfeld’s expansion – see notes 

Warning: assumes no or weak intrinsic T-dependence of transmission 
 – OK for elastic scattering 

Mott-Cutler 

Landauer 

Wiedemann-Franz law 



Two examples 

•  Quantum Point Contact 
•  Quantum Dot 



Quantum Point Contacts (QPC) 
The first evidence of 

conductance quantization 
Van Wees et al. PRL 60, 848 (1988) 

Quantized Conductance of Point Contacts in  
a Two-Dimensional Electron Gas 

cf. also: 
Wharam et al.  

One-dimensional transport and the quantization  
of the ballistic resistance 
J.Phys C 21 L209 (1988)   





Transmission coefficient for an electron injected in channel m  
to go into channel n:   

Each mode n contributes a current proportional to  

Total current finally involves transmission coefficient:  

sum of eigenvalues of tt+ matrix 



cf. Nazarov&Blanter 
Cambridge UP, 2009 

open 

closed 

partial 



Number of transverse  
modes in 2D 
for a width W 
(Slide: G.Montambaux)  



Simplest model: only fully open or fully closed channels 
(`Il faut qu’une porte soit ouverte ou fermée’, Alfred de Musset) 



Thermopower of a QPC 
Theory: P.Streda J.Phys Cond Matt. 1, 1025 (1989), Proetto PRB 44, 9096 (1991)  

First experiment: L.Molenkamp et al. PRL 65, 1052 (1990) 

Use again simplest model (open or close channels only): 



Conductance (units of 2e2/h) 

MINUS the Thermopower  
(units of kB/e) 

Thermopower has a peak each time a new level becomes  
`active’ with ~ constant height  

Recall at low-T: 

Experimental observation: see Laurens Molenkamp’s seminar 

Parabolic well: 



Temperature dependence 
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Slide: courtesy L.Molenkamp – see CdF website 2013-2014 



Energy Filtering 
cf. Mahan and Sofo, PNAS 93, 7436 (1996) 

Think of: 

As a probability density, measuring the contribution to the total conductance of 
states around a given energy (for a given gate voltage) 
Or even better: 



Transmission coefficient (transport function)  
leading to g2à 1 (Mahan-Sofo) :  

Clearly, a narrow transport function (transmission coefficient)  
- approaching asymptotically a δ-function -  

brings g close to unity  

Note however: 
This does not yield the best output power, since the power  
factor is ~ I12/I0 

For optimization  
of transmission 
at finite power, see 



Ilustrate this for a single resonant level  
In the context of mesoscopics: 

- Quantum Dots -  
Early theory work: Beenakker and Staring PRB 46, 9667 (1992) 
Experimental: Molenkamp et al., see seminar 12/11/2013   
Efficiency: Nakpathomkun et al. PRB 82, 235428 (2010)  
(see also: Mani et al. J. Elec. Mat 38, 1163 (2009) 

Nakpathomkun et al. 



Transmission coefficient is a Lorentzian: 

Two control parameters:  

Coupling constant 



For fixed Γ/kT 
optimize over  

bias Δµ 
AND µ-εr 

Nakpathomkun et al.  
PRB 82, 235428 (2010)  



Max efficiency, Max Power,  
Efficiency at Max Power vs. Γ/kT 

Efficiency is harmed by tails of the Lorentzian distribution  
causing too energetic electrons to waste heat in energy production 
and other electrons to travel in the wrong direction 



Low-T limit kT<<Γ: Sommerfeld expansion as above 

`sawtooth’ 



Courtesy L.Molenkamp 



Thermoelectricity of mesoscopic 
systems/nano-devices: 

New ideas and directions 



Three-terminal devices 

For example:  
3-terminal setup 
Entin-Wohlman et al. 
PRB 82 (2010) 115314 

Sanchez & Buttiker PRB 83, 085428 (2011)  



Recent experiment/device 

Recent review: Sothmann et al. arXiv:1406.5329 



A note on the expression  
of transport coefficients  

in the bulk,  
in the Boltzmann equation 

approach 



The Boltzmann equation approach 

Local distribution function 

Relaxation-time approximation: 



( Dimensionality: L2-d ) 

For a bulk material, the Boltzmann equation leads to  
expressions that have complete formal similarity  

to the above ones. cf 2013-2014 lectures notes (website) 

Key difference: SQUARE  
of velocity enters here 
scattering – not ballistic 
Current-current correlator 



Consequences for a heavily doped small-gap 
semiconductor (see notes on the website) 

These expressions are for a single type of carriers  
(e.g. electrons in the conduction band) 

Chemical potential  
counted from the bottom of the conduction band :  

Scattering time and Transport function: 

[Scattering by acoustic phonons: r = -1/2] 
[Parabolic band: φ=3/2] 



Thermopower: (Note the first term δµ/kT)  

Lorenz number: 





Power factor, conductivity and Seebeck vs. chemical potential: 

 0

 1

 2

 3

 4

 5

 6

-4 -3 -2 -1  0  1  2  3  4

η

-α σ α2σ

Optimum for η ~ 0-1, corresponding to n ~ 1020/cm3 

Optimum ZT for η ~ -0.5, n~1019  

à Optimum Seebeck around 200 µV/K 

Acoustic phonon scattering r=-1/2 assumed in this plot 


