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PLAN OF THE LECTURES 

 

Lecture 1. Superfluidity in ultra cold atomic gases: 

                 examples and open questions (May 14) 

 

Lecture 2. A tale of two sounds (first and second sound) (May 21) 

 

Lecture 3. Spin-orbit coupled Bose-Einstein condensed gases: 

                 quantum phases and anisotropic dynamics (May 28) 

 

Lecture 4. Superstripes and supercurrents in spin-orbit  coupled 

                 Bose-Einstein condensates (June 4) 



Major question: How to measure the superfluid 

density in an ultracold gas ?  

(not available from equlibrium thermodynamics, 

needed transport phenomena) 



  Determination of superfluid density  

in strongly interacting Fermi gases  

(measurement of second sound) 

 

 (collaboration with the Innsbruck team,  

Nature, 15 May, online)   
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Dynamic theory for superfluids  

at finite temperature: 

Landau’s Two-fluid HD equations 

(hold in deep collisional regime                  )   
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s is entropy density 

P is local pressure 

1

Ingredients: 

- equation of state 

- superfluid density 

Irrotationality of  

superfluid flow 
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 At T=0: 

eqs. reduce to  

T=0 irrotational 

superfluid HD equations 

SS vj


  ;

equivalent at T=0 

At T=0 irrotational hydrodynamics follows from 

superfluidity (role of the phase of the order parameter). 

Quite successful to describe the macroscopic dynamic  

behavior of trapped atomic gases (Bose and Fermi) 

(expansion, collective oscillations) 
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Hydrodynamics predicts anisotropic 

expansion of the superfluid  
(Kagan, Surkov, Shlyapnikov 1996; Castin, Dum 1996,   



                  T=0 Bogoliubov sound  

(wave packet propagating in a dilute BEC, Mit 97) 

sound velocity as a function  

of central density 

mgnc 2/

factor 2 accounts for harmonic  

radial trapping (Zaremba, 98) 



T=0 Collective oscillations in dilute BEC                

(axial compression mode) : checking validity of 

hydrodynamic theory of superfluids in trapped gases 

 

Exp (Mit, 1997) 

 

HD Theory (S.S. 1996):  

z 57.1

zz  58.12/5 



T=0 breathing mode in elongated Fermi superfluids  
Exp: Altmeyer et al. (Innsbruck 2007) 

Theory: T=0 Hydrodynamics with Monte Carlo eq. of state 

MC equation of state (Astrakharchick et al.,  2005) 

BCS eq. of state 
(Hu et al., 2004) 

3/10 universality ! 

Measurement of collective frequencies  

provides accurate test of  equation of state 

Including beyond mean field effects !! 
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SOLVING THE HYDRODYNAMIC 

EQUATIONS OF SUPERFLUIDS  

 

AT FINITE TEMPERATURE  

 



In uniform matter Landau equations gives rise to two solutions 

 below the critical temperature: 

 

First sound: superfluid and normal fluids move in phase 

 

Second sound: superfluid and normal fluids move  

                          in opposite phase. 

 

If condition                        is satisfied (small compressibility 

                                         and/or small expansion coefficient)                                                                

                                         well satisfied by unitary Fermi gas) 

second sound reduces to 

Isobaric oscillation  

(constant pressure) 

  

In this regime second sound  

velocity is fixed by superfluid density  
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First and second sound velocities in uniform matter  

Unitary Fermi gas 

H. Hu et al. 2009 

Liquid He  

(experiment, Peshkov 1946) 

S

m
n

P
c 












 12

1

Pn

s

m
Cn

Tsn
c

2

12

2 

Ignoring phonon  

thermodynamics 



In dilute Bose gases the superfluid density practiclly 

concides with BEC density and second sound 

reduces to the oscillation of the condensate with  

the thermal part remaining at rest  

mTgn /)(0



What happens in the presence of harmonic confinement ?  

 

 

 

Can we derive solutions of HD equations at finite 

temperature ? 

- Various theoretical (either numerical and analytical) studies at 

finite T available for isotropic 3D harmonic trapping 

    (Castin, Levin, Griffin,  Hu, Taylor, Trento team ….) 

 

- Exp. results available in elongated geometries  

    (both discretized solutions and sound propagation) 
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 First sound scaling solutions available at unitarity for any T 

- For isotropic harmonic  trapping an exact scaling solution  

(breathing oscillation) of the Schrodinger equation can be 

proven at unitarity. The frequency of the oscillation is    

    twice the harmonic frequency (Castin, 2004). 

 

- In a recent paper (Hou et al. 2013) we have 

    proven that at unitarity Landau’s two fluid 

    HD equations admit exact scaling solutions 

    for arbitrary deformed harmonic trapping 

 

 

    Frequency does not depend on Temperature 

 

- Compared to Castin’s theorem our result holds only in 

hydrodynamic regime, but applies to more relevant 

experimental situations (deformed harmonic traps) 
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Temperature increases with  holding time (heating effect) 

 

Frequency of scaling axial mode (k=1) does not vary with T 

   

Exp data:  

Meng Kohn Tey at al PRL 2013 
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From 3D to 1D  at finite temperature 

In the presence of tight radial trapping  

(still LDA in radial direction)  

3D Hydrodynamic equations can be  

reduced to 1D form (Bertaina et al. 2011) 

z

- New equation of state (                         ) 

 

- Easier experimental conditions 

 

- Easier realization of HD condition 

 

- New role of viscosity and thermal conductivity 

    ensuring 1D form of equations 

  

- Easier theoretical calculation 
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1D hydrodynamic condition 

 
Implies that both normal velocity field and temperature variations 

do NOT depend on radial variable. 

Follows from the condition 

(viscous penetration depth larger than radial size) 

 

Independence of superfluid velocity on radial variables follows 

from equation                                            T=0 1D Hydrodynamics 

 

In a tube with hard walls, independence of normal velocity on 

radial coordinates implies vanishing of normal velocity field 

(only superfluid can move: fourth sound in superfluid helium). 

 

With radial harmonic trapping also the normal part can move . 
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      1D Hydrodynamic equation for first sound  at unitarity: 
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Solutions are discretrized because of axial trapping  

at T=0 (              )                                  at large T (            ) 

 

 

Lowest frequency solutions:  

- Sloshing  (k=0,           ,                  ) 

- Scaling Axial breathing (k=1,                       ,           ) 

    are temperature independent 

 

Higher nodal modes (k=2) exhibit Temperature dependence 

(test of EoS and of 1D hydrodynamic approximation) 
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Higher nodal modes can be excited by proper density 

modulation of laser perturbation 

Density modulations of 

k=2 mode at different T  

Equilibrium density 

profiles at different T 

Exp data and theory predictions:  

Meng Kohn Tey at al PRL 2013 



Temperature increases with  holding time (heating effect) 

 

Frequency of scaling axial mode (k=1) remains constant 

Frequency of higher nodal modes (k=2,3) decreases   

Exp data:  

Meng Kohn Tey at al PRL 2013 
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Measured temperature dependence of k=2 mode 

   

Theory predictions obtained  

solving 1D HD eqs.   

with MIT equation of state  
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Meng Kohn Tey at al PRL 2013  (IBK-MIT-Trento collaboration) 

Ideal Fermi gas EoS 

MIT EoS 



Measurement of  second sound and  

determination of the superfluid density  

in a strongly interacting Fermi gas 

    (Innsbruck- Trento collaboration) 



First measurements of second sound carried out at Utrecht 

(2009) in a dilute 1D like Bose gas  

     -  density wave of the condensate, thermal cloud practically 

        remains at rest). 

     -  Sound velocity fixed by temperature dependence of  

        condensate fraction 

 

 

 

 

 

 

More interesting conditions are expected to occur in the 

interacting Fermi gas at unitarity: 

- Large space overlap between superfluid and normal densities 

- Superfluid density different from pair condensate density  

Phys. Rev. A  

80, 043605 (2009) 



In a recent paper we have provided a combined exp + theory 

investigation of the propagation of second sound and of 

superfluid density in a strongly interacting Fermi gas 

arXiv: 1302.2871 

Nature, 15 May online 



To excite first  sound  one suddenly  turns on a 

repulsive (green) laser beam in the center of the trap 

[similar tecnhnique used at Mit (1998) and Utrecht (2009) 

to generate Bogoliubov sound in dilute BEC and at Duke 

(2011) to excite sound in a Fermi gas along the BEC-

BCS crossover at T=0] 

Both first and second sound have been investigated 



Velocity of  first sound of radially trapped  

unitary Fermi gas given by adiabatic law  

(excellent approximation due to small 

thermal expansion) also below critical temperature 

 

By measuring velocity of the signal at different times 

(different pulse  positions) one extracts behavior as a 

function of              . T is fixed, but      decreases   as the 

perturbation moves to the periphery (lower density)  
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To excite second sound  one keeps the repulsive 

(green) laser power constant with the exception of a 

short time modulation producing local heating  in the 

center of the trap 

 

 

 

 

 

 

 

The average laser power is kept constant to limit the 

excitation of pressure waves (first sound) 



First sound  

propagates also beyond 

the boundary between the 

superfluid and the normal 

parts 

 

Second sound 

propagates only within the 

region of co-existence of 

the super and normal 

fluids.  

 

Second sound is basically 

an isobaric wave, but  

signal is visbile because 

of small, but finite 

thermal expansion. 



Second sound: 

relative density and temperature 

variations are fixed by thermal 

expansion (consequence of 

isobaric nature of second sound) 

and are not negligeable (except at  

very small temperatures) 

  

 

In Innsbruck experiment second 

sound is excited via a thermal 

perturbation and detected 

imaging the propagation of the 

density signal.    
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Relative density vs T 

fluctuations during the 

propagation of second sound 

(thermodynamics from MIT)  



From measurement of  

1D second sound velocity  

and relationship with 1D 

superfluid density  

 

 

 

 

one extracts 1D superfluid 

density 
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From integral definition  

  

 

one  can reconstruct 3D superfluid fraction  
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Some comments: 

 

- Superfluid fraction of unitary Fermi gas behaves similarly to 

superfluid helium (strongly interacting superfluid) 

  

- Very different behavior compared to dilute BEC gas.  

    New benchmark for many-body calculations  

 

- Superfluid density differs  

    significantly from condensate  

    fraction of pairs  

    (about 0.5 at T=0,   

     Astrakharchik et al 2005) 

 

- Condensation fraction of pairs  

    measurable by fast ramping of  

    scattering length to BEC side (bimodal distribution) 

    (Jila 2004, Mit (2004, 2012)) 



       Other questions concerning superfluid density 

 

- Behavior in 2D (BKT transition). Superfluid density has a jump 

at the transition. Possible strategies to measure  

    i) second sound in 2D dilute Bose gas 

    ii) measurement of moment of inertia 

    iii) transverse response function  

 

- Control of superfluid flow via superleak (only superfluid can flow) 

    Thermomechanical effect. ‘Cooling by heating a superfluid’ 

                                                          (Papoular et al, PRL 2012) 

                                   By heating the rhs (         ) one predicts a  

                                   flow of the superfluid from right to left with                        

                                   consequent increase of  quantum  

    degeneracy in the left hand side.  

    Change in density fixed by behavior  

    of chemical potential at fixed density 
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