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Major question: How to measure the superfluid
density in an ultracold gas ?

(not available from equlibrium thermodynamics,
needed transport phenomena)




Determination of superfluid density
In strongly interacting Fermi gases
(measurement of second sound)

(collaboration with the Innsbruck team,
Nature, 15 May, online)

Leonid Sidorenkov Rudolph Grimm
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Dynamic theory for superfluids
at finite temperature:
Landau’s Two-fluid HD equations

(hold in deep collisional regime |@z<<1l )

S Is entropy density
P is local pressure

Irrotationality of
superfluid flow

—

Ingredients:
- equation of state
- superfluid density




At T=0: p=p; ;T:Ns
egs. reduce to
T=0 irrotational

superfluid HD equations

equivalent at T=0

At T=0 irrotational hydrodynamics follows from
superfluidity (role of the phase of the order parameter).
Quite successful to describe the macroscopic dynamic

behavior of trapped atomic gases (Bose and Fermi)
(expansion, collective oscillations)




Hydrodynamics predicts anisotropic

expansion of the superfluid
(Kagan, Surkov, Shlyapnikov 1996; Castin, Dum 1996,
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T=0 Bogoliubov sound
(wave packet propagating in a dilute BEC, Mit 97)

2
/ Density [101 em—?]

sound \/elocity as a function
of central density

factor 2 accounts for harmonic
radial trapping (Zaremba, 98)




T=0 Collective oscillations in dilute BEC
(axial compression mode) : checking validity of
hydrodynamic theory of superfluids in trapped gases

Exp (Mit, 1997) w=15/w,

HD Theory (S.S. 1996): @=,/5/2 w, =1.580,

5 milliseconds per frame




T=0 breathing mode in elongated Fermi superfluids

Exp: Altmeyer et al. (Innsbruck 2007)
Theory: T=0 Hydrodynamics with Monte Carlo eq. of state

MC equation of state (Astrakharchick et al., 2005)
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SOLVING THE HYDRODYNAMIC
EQUATIONS OF SUPERFLUIDS

AT FINITE TEMPERATURE




In uniform matter Landau equations gives rise to two solutions
below the critical temperature:

First sound: superfluid and normal fluids move in phase

Second sound: superfluid and normal fluids move
In opposite phase.

2
If condition sz €. —Cv 1 is satisfied (small compressibility
4 & and/or small expansion coefficient)
well satisfied by unitary Fermi gas)
second sound reduces to

Isobaric oscillation entropy
(constant pressure)
In this regime second sound Specific heat

velocity is fixed by superfluid density




First and second sound velocities in uniform matter
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In dilute Bose gases the superfluid density practiclly
concides with BEC density and second sound
reduces to the oscillation of the condensate with
the thermal part remaining at rest

1 /an, (™) 7m

—
.

Sound velocities [in units of 7|

=
=

1.0




What happens in the presence of harmonic confinement ?

V.. =@/2m)[w’ (X* + y°) + @’z

Can we derive solutions of HD equations at finite
temperature ?

Various theoretical (either numerical and analytical) studies at
finite T available for isotropic 3D harmonic trapping
(Castin, Levin, Griffin, Hu, Taylor, Trento team ....)

Exp. results available in elongated geometries o, <<,
(both discretized solutions and sound propagation)




First sound scaling solutions available at unitarity for any T

- In a recent paper (Hou et al. 2013) we have

For isotropic harmonic trapping an exact scaling solution
(breathing oscillation) of the Schrodinger equation can be
proven at unitarity. The frequency of the oscillation is

twice the harmonic frequency (Castin, 2004).

proven that at unitarity Landau’s two fluid
HD equations admit exact scaling solutions
for arbitrary deformed harmonic trapping

i=o,lo,| o :@%f i%maz“ ~327° +25ja)f

- Compared to Castin’s theorem our result holds only in

Frequency does not depend on Temperature

hydrodynamic regime, but applies to more relevant
experimental situations (deformed harmonic traps)
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From 3D to 1D at finite temperature

In the presence of tight radial trapping
(still LDA in radial direction) -

3D Hydrodynamic equations can be
reduced to 1D form (Bertaina et al. 2011)

- New equation of state ( _ )

- Easier experimental conditions

- Easier realization of HD condition -

- New role of viscosity and thermal conductivity

ensuring 1D form of equations -

- Easier theoretical calculation




1D hydrodynamic condition |g<<@’r

Implies that both normal velocity field and temperature variations
do NOT depend on radial variable.

Follows from the condition 7 >>mn®

(viscous penetration depth larger than radial size)

Independence of superfluid velocity on radial variables follows
from equation M&,Vs +Vdu(n) =0 =) T=0 1D Hydrodynamics

In a tube with hard walls, independence of normal velocity on
radial coordinates implies vanishing of normal velocity field
(only superfluid can move: fourth sound in superfluid helium).

With radial harmonic trapping also the normal part can move .




1D Hydrodynamic equation for first sound at unitarity:

M(w” — @)V, —Zma)fz@zvZ +Zﬂa§vz =0
5 on

n, = [ ndxdy P, = [dxdyP oc n"°f (T / n?'®)

Solutions are discretrized because of axial trapping
atT=0(Rocn™) g4y _atlargeT(R=Tn)

1
w° :g(k +1)(k +5)w? w° =%(7k+5)a)22

Lowest frequency solutions:
- Sloshing (k=0, ®=w,, Vv, =const )

- Scaling Axial breathing (k=1, ®=+v12/5w, ,Vv,=17)
are temperature independent

Higher nodal modes (k=2) exhibit Temperature dependence
(test of E0S and of 1D hydrodynamic approximation)




Higher nodal modes can be excited by proper density
modulation of laser perturbation

Density modulations of
k=2 mode at different T

Equilibrium density
profiles at different T

Exp data and theory predictions:
Meng Kohn Tey at al PRL 2013
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Measured temperature dependence of k=2 mode

Theory predictions obtained 7 7P
: m(o® — )V, ——Mma’z0.V, +—-20°v, =0
solving 1D HD eqgs. : Ny — g MO, 20,V YV,

5N
with MIT equation of state :

Meng Kohn Tey at al PRL 2013 (IBK-MIT-Trento collaboration)
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Measurement of second sound and

determination of the superfluid density

In a strongly interacting Fermi gas
(Innsbruck- Trento collaboration)




First measurements of second sound carried out at Utrecht
(2009) in a dilute 1D like Bose gas
- density wave of the condensate, thermal cloud practically
remains at rest).
- Sound velocity fixed by temperature dependence of
condensate fraction

Sound propagation in a Bose-Einstein condensate at finite temperatures

R. Meppelink, S. B. Koller, and P. van der Straten!

Phys Rev A !Atom Optice and Ultrafast Dynamics, Utrecht University,

P.0Q. Box 80,000, 3508 TA Utrecht, The Netherlands

80’ 043605 (2009) (Dated: September 18, 2009)

We study the propagation of a density wave in a magnetically trapped Bose-Einstein condensate
at finite temperatures. The thermal cloud is in the hydrodynamic regime and the system is therefore
described by the two-fluid model. A phase-contrast imaging technique is used to image the cloud of
atoms and allows us to observe small density excitations. The propagation of the density wave in
the condensate is used to determine the speed of sound as a function of the temperature. We find
the speed of sound to be in good agreement with calculations based on the Landaun two-fluid model.

More interesting conditions are expected to occur in the
Interacting Fermi gas at unitarity:

- Large space overlap between superfluid and normal densities
- Superfluid density different from pair condensate density




In a recent paper we have provided a combined exp + theory
Investigation of the propagation of second sound and of
superfluid density in a strongly interacting Fermi gas

Second sound and the superfluid fraction in a resonantly interacting Fermi gas

Leonid A. Sidorenkov, Meng Khoon Tey, and Rudolf Grimm
Institut fiir Quantenoptik und Quanteninformation (IQOQI),
Osterreichische Akademie der Wissenschaften and
Institut fiir Frxperimentalphysik, Universitit Innsbruck, 6020 Innsbruck, Austria

Yan-Hua Hou!, Lev Pitaevskii’?, and Sandro Stringari!
! Dipartimento di Fisica, Universitd di Trento and INO-CNR BEC Center, 1-38123 Povo, Italy and
2 Kapitza Institute for Physical Problems RAS, Kosygina 2, 11933} Moscow, Russia

(Dated: February 13, 2013)

arxXiv: 1302.2871
Nature, 15 May online




Both first and second sound have been investigated

To excite first sound one suddenly turns on a
repulsive (green) laser beam in the center of the trap
[similar tecnhnigue used at Mit (1998) and Utrecht (2009)
to generate Bogoliubov sound in dilute BEC and at Duke
(2011) to excite sound in a Fermi gas along the BEC-
BCS crossover at T=0]




Velocity of first sound of radially trapped 7 P
unitary Fermi gas given by adiabatic law mecs = — -1
(excellent approximation due to small
thermal expansion) also below critical temperature

I
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By measuring velocity of the signal at different times
(different pulse positions) one extracts behavior as a
function of T/T:". Tis fixed, butT. decreases: as the
perturbation moves to the periphery (lower density)
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To excite second sound one keeps the repulsive
(green) laser power constant with the exception of a
short time modulation producing local heating in the
center of the trap
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The average laser power is kept constant to limit the
excitation of pressure waves (first sound)




First sound
propagates also beyond\
the boundary between the
superfluid and the normal
parts

Second sound
propagates only witm\nth1=>
region of co-existence of
the super and normal
fluids.

Second sound is basically
an isobaric wave, but
signal is visbile because
of small, but finite

thermal expansion.
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From measurement of
1D second sound velocity
and relationship with 1D
superfluid density

n.Ts
mC22= s1'¥1
nn1CP1

one extracts 1D superfluid
density




From integral definition

n, = j n dxdy

one can reconstruct 3D superfluid fraction
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Some comments:

- Superfluid fraction of unitary Fermi gas behaves similarly to
superfluid helium (strongly interacting superfluid)

- Very different behavior compared to dilute BEC gas.
New benchmark for many-body calculations

1.0 focstlee

- Superfluid density differs
significantly from condensate
fraction of pairs
(about 0.5 at T=0,
Astrakharchik et al 2005)

condensate fraction
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- Condensation fraction of pairs
measurable by fast ramping of
scattering length to BEC side (bimodal distribution)
(Jila 2004, Mit (2004, 2012))




Other questions concerning superfluid density

Behavior in 2D (BKT transition). Superfluid density has a jump
at the transition. Possible strategies to measure p.

1) second sound in 2D dilute Bose gas

) measurement of moment of inertia

i) transverse response function

Control of superfluid flow via superleak (only superfluid can flow)
Thermomechanical effect. ‘Cooling by heating a superfluid’
(Papoular et al, PRL 2012)

By heating the rhs ( T, >T) one predicts a
flow of the superfluid from right to left with
Tr, HR consequent increase of quantum

degeneracy in the left hand side.
Change in density fixed by behavior ;"=
of chemical potential at fixed density : ™

o =1k 0, ul, T




