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Interacting Fermions:
Introduction to
Dynamical Mean-Field Theory (DMFT)

Lecture 3 — Different perspectives on the
DMFT equations, their derivation and the
limit of large dimensions.

Slides will be in English 2018-2019 Lectures
Please don't hesitate to ask questions in French or English May 21, 2019




Today’s seminar (11:30)

Jan Kunes
Institute of Solid-State Physics, TU Wien

Institute of Physics, Czech Academy of Sciences, Praha

Excitonic Condensation of Strongly
Correlated Electrons




Exceptional seminar

Wednesday May 22 at 11:00
Salle 5

Andrew J. Millis

Columbia University
and CCQ-Flatiron Institute, Simons Foundation, New York

Correlated Electrons and the Lattice
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A theoretical description of the
solid-state based on ATOMS
rather than on an electron-gas picture:
« Dynamical Mean-Field Theory »

Dynamical Mean-Field Theory:
A.G. & G.Kotliar, PRB 45, 6479 (1992)

Correlated electrons in large dimensions:
W.Metzner & D.Vollhardt, PRL 62, 324 (1989)

Important intermediate steps by: Miller-Hartmann,
Schweitzer and Czycholl, Brandt and Mielsch, V.Janis

Early review: Georges et al. Rev Mod Phys 68, 13 (1996)




Dynamical Mean-Field Theory:

viewing a material as an (ensemble of) atoms coupled to a
self-consistent medium

Solid: crystal lattice of atoms

Correlated electrons in large dimensions: W.Metzner & D.Vollhardt, 1989
Dynamical Mean-Field Theory: A.G. & G.Kotliar, 1992




Example: DMFT for the Hubbard model (a model of coupled atoms)

R
H = — Z tRR/dI{adea T ZHatom
RR/ R Hiiom = Sdan + UnTn¢

Focus on a given lattice site:
“Atom” can be in 4 possible configurations:|0), | ), | 1), | TI)

J

Describe "history” of fluctuations between those configurations
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Imaginary-time effective action
describing these histories:
S =5, + Shyb

Sat = /OB dr za:dj(T) ((% - u) do (1) + U /05 dr ny (1)1 (7)

Shyb = /O i dr /O i dr’ zaj dX (DA(r — 7)dy (1)

The amplitude A(T) for hopping in and out of the selected site

Is self-consistently determined: it is the quantum-mechanical
Generalization of the Weiss effective field.

Effective bare propagator’ self-consistently determined,
hence depends on U, and other parameters.




The self-consistency equation and the DMFT loop
Approximating the self-energy by that of the local
problem : 3} (k, w) ~ ¥, (w)

—> fully determines both the local G and A:

moliw; Al =3 .

Kk Gimp[iw; A]_l —+ A(zw) — €k

Ei‘};%T
Gimp (@)

SELF-CONSISTENCY CONDITION




GRgR Is related to the exact self-energy of the lattice (solid) by:

In which &£ L 1s the tight-binding band (FT of the hopping tgr:)

Let us now make the APPROXIMATION that the lattice

self-energy is k-independent and coincides with that of the
effective atom (impurity problem):

This leads to the following self-consistency condition:

imp[’iw; Al = Z

k




A(w): generalizing the Weiss field to

the quantum world
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Weiss mean-field theory
Density-functional theory >
Dynamical mean-field theory

rely on similar
conceptual basis

TABLE 2. Comparison of theories based on functionals of a local observable

Theory | MET | DFT | DMFT |

| Quantity | Local magnetization m; | Local density n(x) | Local GF Gy(®) |

Equivalent ‘ Spin in Electrons in ‘ Quantum ‘

system eftective field effective potential | 1mpurity model
Generalised Effective Kohn-Sham ‘ Effective ‘

Weiss field local field potential hybridisation

- Exact energy functional of local observable

- Exact representation of local observable: see e.g
- Generalized ~"Weiss field” A.G

- Self-consistency condition, later approximated 3%‘%’1(’203”""(““




The DMFT construction is EXACT:

* For the non-interacting system
(U=0 2> 2=01

* For the isolated atom
(strong-coupling limit t=0 > A = 0)

- Hence provides an interpolation from weak to strong
coupling

* In the formal limit of infinite dimensionality (infinite

lattice coordination) [introduced by Metzner and Vollhardt, PRL
62 (1989) 324]

Proofs: LW functional, Cavity construction (more on board)




Physical Limits in which DMFT is
accurate: small correlation lengths

o—e DMFT
— 10th order
8th order
-—- 6th order
- - Padé
— Heisenberg model (QMC)
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Hubbard d=3 1% filled
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De Leo et al.

PRA 83 (2011) 023606

0 05 1 15T/t

Hubbard d=3 - filled

Fuchs et al.
PRL 106 (2011) 030401
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Doped: smaller correlation length

U/6t=2.5, w/6t=4 = ' [ U/6t=25 wet=245 '

o—e DMFT
== 2nd order
o—e DMFT | | -—- 6th order
—= 2nd order — 10th order
.=+ 6th order -~
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Fig. 1 Comparison between DMFT and high-temperature series for the double occupancy d = (n4n ) and entropy
per site as a function of inverse temperature 36t = 6¢/kT', for U/6t = 2.5. a): At p/6t = 4 (corresponding to the
high-density regime). b): At /6t = 2.45 (corresponding to an intermediate density n ~ 1.25). Reproduced and
adapted from Ref. [10]
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cf. A.G. Ann. Phys (Berlin) 523 (2011) 672




The Luttinger-Ward Functional

Does it really exist ? ©

week ending

PRL 114, 156402 (2015) PHYSICAL REVIEW LETTERS 17 APRIL 2015

Nonexistence of the Luttinger-Ward Functional and Misleading Convergence
of Skeleton Diagrammatic Series for Hubbard-Like Models

o 12% o o 2 : . 324
Evgeny Kozik, Michel Ferrero,” and Antoine Georges

10P Publishing Journal of Physics A: Mathematical and Theoretical
J. Phys. A: Math. Theor. 48 (2015) 485202 (6pp) doi:10.1088/1751-8113/48/48/485202

Skeleton series and multivaluedness of the
self-energy functional in zero space-time
dimensions

Riccardo Rossi' and Félix Werner”




Classical StatMech Model in which an infinite series of
terms must be summed in d=infty: fully frustrated Ising

J. Phys. A: Math. Gen. 23 (1990) 2165-2171. Printed in the UK

The fully frustrated Ising model in infinite dimensions

Jonathan S Yedidiat and Antoine Georges:

+ Department of Physics, Jadwin Hall, Princeton University, Princeton, NJ 08544, USA
% Laboratoire de Physique Théorique, Ecole Normale Supérieure, 24 rue Lhomond, 75231
Paris Cedex 05, France

Received 28 September 1989

Abstract. We solve, subject to the validity of some reasonable assumptions, the ‘fully
frustrated” Ising model in the limit of infinite dimensions using an extension of the TAP
theory for spin glasses. In contrast to the TAP theory of the infinite-range spin glass, an
infinite summation of diagrams is required to recover the Gibbs free energy for this model.
The model undergoes a first-order transition. The method used to solve the model should

have many applications to other physical problems.
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Figure 1. The Gibbs free energy of the ‘fully frustrated’ Ising model on a hypercubic lattice

in the limit of infinite dimensions.




FIG. 84. Density of state D (¢) for tight-binding electrons with
nearest neighbor hopping on a hypercubic lattice of various
dimensionalities. From Vollhardt (1994).

Density of states of a tight-binding band
on a d-dimensional cubic lattice, as d increases.




MERCI POUR VOTRE ATTENTION!

PROCHAINE SEANCE:
MARDI 28 Mai 9:30

Two Lectures:
Atom in a bath: introduction to the
Anderson impurity model
with a DMFT perspective
- The Mott transition

No seminar




