Strong Correlations and High
Temperature Superconductivity:
Families of Materials and
Theoretical Trends.

Gabriel Kotliar
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Heavy Fermion Superconductivity

1979: Frank Steglich discovers
superconductivity in CeCu2Si2 a heavy
fermion material. Superconductivity occurs
with an enormous heat capacity jump.

People did not believe superconductivity was possible in
systems with magnetic moments.

Superconductivity had been detected and dismissed in UBe13
(as a U filamentary effect) in 1975, and CeCu2Si2 in 1978 (but
only in a footnote, and the authors did not recognize it as a
genuine effect, since it was not believed it was possible).

Curiosities, until ... CeColn5 115 (2d analog of a
cubic system Celn5 ) PuCoGa5 “115” isa 20K
superconductor in the heavy fermion family.
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The integral of gamma (T) gives the entropy contained in the superconducting
state at Tc. The integrals of the entropies give the condensation energy.
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Common Features of Many Heavy Fermion Systems :
Interplay with (parasitic ?)magnetism.

20 F heavy Fermi 4
liquid
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Unconventional Superconductivity Loves Company
the company of a competing phase
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Theory of nearly ferromagnetic transition metals. Spin fluctuations
contribute to thermodynamics and are pair breakers. RPA (mid sixties)

They played an important role in mediating p —type superconductivity
in Helium3 (seventies)

Collective modes in itinerant systems, giving rise to important
thermodynamical contributions near a QCP (seventies).Treatments
beyond RPA.

Theories. Effective theory: QP interacting with bosons. Microscopic
theories such as Hubbard model.

Heavy Fermion superconductivity (Beel Monod Bourbonnais Emery,
Miyake Schmidt Rink, Varma, Scalapino, Hirsch, Loh) motivated the
extensions to d singlet pairing. Also organics(Emery).

Intensive studies of this mechanism for the cuprates (Scalapino,
Pines, Montoux, Ueda, Moriya, Lonzarich, Tremblay, ...... )



Correlated Superconductivity Point of View

The ideas emerged in response to the discovery of high Tc (PW
Anderson’s 1987 Science article). Connection between
superconductivity and proximity to a Mott insulator spin liquid.

(1987-1988)Mathematical formulation with slave boson mean field
theory on a plaquette, and variational Gutzwiller RVB wave functions,
predicted the d wave superconductivity. Slave boson MFT predicted a
pseudogap at finite temperatures.

The approach to the Mott insulator renormalizes the kinetic energy,
pairing of spins gets stronger as the insulator is approached, Trvb
increases. Singlets formation M* finite Z proportional to doping.

Repulsion does not matter for pairing.

The proximity to the Mott insulator reduce the local charge stiffness.
Superconductivity requires formation of quasiparticles. Ty goes to zero

Superconducting dome. Proximity to localization/delocalization
transition matters for finding optimal Tc.

Pseudogap has same symmetry as superconducting state.

Significantly improved formulation with DMFT. (single site and cluster,
over the past decade, continues today ).



Paramagnons and Phonons: the main Differences PHYSICAL REVIEW B, VOLUME 6 545
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Magnetically mediated superconductivity in quasi-two and three dimensions

P. Monthowx and G. G. Lonzarich
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Phonons are fundamental degrees ot freedom, spin fluctuations are
emergent degrees of freedom, much harder to evaluate their
parameters.

Phonons propagate, spin fluctuations are damped. No precise
analogy between Debye energy and TO.

Spin fluctuations are important ONLY when they are close to an
instability, so the analogy is with ANHARMONIC phonons (difficult
problem ).

Weak coupling approximations capture the key ideas. [ RPA,
2PSCS....] . Infrared singularities in 2d, not fully sorted out.

Strong k dependence of the coupling, solve full k and omega
dependent Dyson equations.

Self consistency vs non self consistency at one particle level. [ TPSC
uses bare greens functions to be able to reach stronger couplings,
mix self consistency inside the SC state? |
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In the absence of a completely accepted theory, one can look at the phase diagrams and
the issues surrounding superconductivity in a given class of materials keeping both the
spin fluctuation theory (or soft mode exchange for other competing phases) and the
correlated superconductivity theory as alternative points of view.

At each stop one needs to ascertain, key variables
for determining the occurrence superconductivity
transition ?

e Degree of two dimensionality ?

* Degree of coherence incoherence ?

e Proximity to the localization transition ?
e Pairing Mechansims

e Factors limiting the Tc

* Proximity or connection to other phases.
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Interpret j now as an angular momentum
index on the fermi surface, j=1 Alg, j=2 B2g

T. = <o> exp[-(1+A,)/A,]

In the spin fluctuation model the lambdas are taken to be quite
large and <w>= Tsf. See Lonzarich and Montoux (PRB) who solve
the equations in the Full BZ.
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properties ???7?



What determines if magnetism and d wave
superconductivity coexists microscopically or not ?

Possible answer from CDMFT, it is the correlation strength
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squares). The dSC order parameter was multiplied by a factor of 10
for graphical purposes.




Number of Organic Superconductors Grows

New discoveries suggest that the superconductivity of certain
organic salls is a general phenomena

temperat ured Ky

[ |
10 20
pressura(kbar)

In Bechgaard salts such as (TMISF),PFy, the planar organic molecules are stacked like
pancakes with every other molecule slightly offset. This provides niches in which the inorganic
salts sit. The shaded areas represent regions of charge density.
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Common theme in many high Tc, charged layers.

Bechgaard salts, Cuprates, MgB2 , Kappa Organics
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In Kappa Organics one can identify the
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Qualitative features of phase diagram
are in good agreement with CDMFT.
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SUPERCONDUCTIVITY
IN DOPED FULLERENES

While there is not complete agreement on the microscopic
mechanism of superconductivity in alkali-metal-doped C,, .
further research may well lead to the production of analogous
materials that lose resistance at even higher temperatures.

Arthur F. Hebard

Rb,CsCes | PHYSICS TODAY NOVEMBER 1992
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Transition temperature 7_ of bulk powder samples of

As Al Cgq, where A and A’ represent K, Rb or Cs, has a

nearly linear dependence on lattice constant a. Alkali atoms

with larger ionic radii produce a greater effective negative

pressure and a larger lattice constant. The lattice constants

refer to fcc unit cells. Application of pressure causes a lattice

contraction and corresponding decrease in 7_. Results

, , , determined for potassium- and rubidium-doped Cgq (blue and

138 14 142 14.4 146 black lines, respectively) overlap with the zero-pressure data.
HAENICE CONSIANT (angstoms) (Adapted from refs. 12 and 13.) Figure 4
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Magnetism emerges upon expansion
Science 323 20 March 2009: 1585,
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Tc = Anion Height in Fe-based SCs
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Hunds Metals not doped Mott Insulators. Strength
of correlations are due to Fe Hunds rule J not to

HUbba rd U. K Haule and G. Kotliar cond-mat arXiv:0805.0722
New Journal of Physics 11 (2009) 025021.
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On this and most of the questions
raised in this series of lectures the jury
is still out, and the researchers are
working their way into the mysteries of
the high Tc landscape.

Many surprises are still ahead.

THANK YOU FOR YOUR ATTENTION!!!



