

Fizeau focus Array of densifiers

## **Coverage of Multi-field Image**

| 9 |   |   | ۲ | ۲ |  |
|---|---|---|---|---|--|
|   |   | ۲ |   |   |  |
|   |   |   |   |   |  |
| ۲ | ۲ |   | ۲ |   |  |
| ۲ |   | ۲ |   |   |  |
|   |   |   | ۲ | ۲ |  |



Number of fields =  $(F d / \lambda)^2$ relative coverage of sky area =N  $(d/D)^2$ Example: "exploded OWL" N=10,000; d=1m; D=1km gives 10,000 fields and 1% coverage

# A square aperture with and without apodization

- Here is a square aperture with crossed Sonine apodization.
- Next to it is the two point image (100:1 contrast) with square aperture but no apodization.
- On the lower row, the 100:1 image with apodization and then 10<sup>6</sup>:1 ratio with apodization.
- Apodization narrows the aperture and degrades the resolution, with a *significant* increase in dynamic range.



Apodized Square Aperture



100:1 Two Point Image with Apodization



100:1 Two Point Image with No Apodization



One Million: 1 Two Point Image with Apodization

Apodization with Square Aperture

#### Science Scoring – Results

(Planetary sci: 75% Astrophys: 25%)

|                                   | Planetary Sci | Astrophys | Weighted<br>total |
|-----------------------------------|---------------|-----------|-------------------|
| Densified Pupil<br>Hypertelescope | 455/500       | 412/550   | 444               |
| Laser Trapped<br>Mirror           | 400/500       | 550/550   | 437               |
| Book Design                       | 365/500       | 371/550   | 366               |
| Redundant<br>Linear Array         | 300/500       | 287/550   | 297               |
| ASA                               | 300/500       | 340/550   | 310               |
| Occulters                         | 250/500       | 520/550   | 317               |

## Comparison of Concepts



Science Thresholds

## **Conclusions and Recommendations**

- Develop Apodized Square Aperture architecture on several possible scales in visible and infrared as potentially quickest, cheapest TPF realization.
- Develop Hypertelescope Imager architectures, as most promising for eventual very high resolution TPF realizations, scalable to Life Finder and Planet Imager.
- Define earth frequency through precursors.
- Develop mini-TPF options as TPF alternatives.
- Continue investigation of Laser Trapping as enabling technology for future ultra-large apertures.

## Preliminary Deployment Analysis



- Three rings of segments, 36 reflector panels
- Areal density 15 kg/m2
- Maximum panel diameter 3.8 m
  - (1) Maximum reflector diameter 23 m
  - (2) Packaged height 14.8 m
  - (3) Packaged cross-sectional diameter 4.9
- Packaged volume 283.4 m<sup>3</sup>
- Reflector mass 5200 kg







### **Erectable Segmented Reflector**

- Advantages:
  - Can be packaged efficiently
  - 1<sup>st</sup> Frequency ~10 Hz
- Disadvantages:
  - Cost and time associated with on orbit construction
  - Associated orbital transfer loads (LEO to L2) applied to the structure



### Assembled reflector : 3 ring

- (1) Maximum diameter 24.3 m
- Reflector mass 3470 kg
- Reflector surface area 374 m<sup>2</sup>
- Moment of inertia 130,850 kg m<sup>2</sup>



## Frequency analysis: 3 ring

• To a first approximation, the erectable reflector can be considered as flat circular sandwich plate. (Curvature effects are negligible in the determination of the lowest natural frequency)

Approx. 1<sup>st</sup> resonant frequency ~19 Hz \*\*



\*\* Tower truss and secondary mirror not included

## ASA 30 Configuration (3 of 5)



Spherical shape



#### UMBRAS/Occulters Update Oct. 2000 (2 of 2)

- Additional concept reviewed: SCODOTEP, J. Schneider
  - Less mature than either UMBRAS/BOSS
  - Considers both artificial disks & Moon as a possible occulters
- Feasibility issues with all concepts
  - Relative position (telescope-occulter) severely limits flexibility in selecting targets (or else requires frequent repositioning)
  - Good metrology required to maintain occultation (solvable)
  - The occulter is a complete spacecraft, requiring development, launch, and operations, yet only half an instrument
  - Null depth only to 10<sup>-4</sup> with 100m dia. occulter

 $\rightarrow$  BUT, Could be used with other methods

Questions

- Could L<sub>2</sub> dynamics help with occulter trajectory management?

# TPF Mission Architectures

## ASA 30 Configuration Detail of dove-tail fitting & Actuator control



Elastic Separator
 EM Actuators
 Metal plate

Electromagnetic actuators have some permanent magnetism for holding tiles in place, and are used for both piston and tilt corrections.

#### Hypertelescope architecture concept proposed for DARWIN and TPF (Boccaletti et al., Icarus, May 2000)

coronagraphe

densifieur de pupille

M2

M3

## Beam Combiner

- Fizeau stage + densifier
- Corrector of spherical aberration and coma
- Pupil densifier: micro-lenses or micro-mirrors
- Usable primary median field size is D/2F (7,2° if F/4 aperture)



#### Corrector of Spherical Aberration and Coma from F/4 Spherical Array



- 0.21 m diameter, 1.34 m length for 100 m array at F/4
- 25 % central obscuration, reducible by increasing size
- Pupil obscuration up to 10% tolerable for Rouan coronagraph : possible with larger (3x) corrector

#### Densified Pupil I maging w/ Coronagraphy



- Four-quadrant phase-mask in the focal plane (Rouan 2000)
- High dynamic range ⇒ 20 mag.
   with perfect optics
- Resolution unaffected
- Broad-band operation with achromated phase mask
- Exit pupil must be circularized
- Affected by guiding errors (null width  $\propto \theta^2$ )



## Coronagraphy simulations



I mage with 7 elements

I mage of a solar system (G2V star, Venus, Earth, Mars) at 20 pc for 100 m baseline Lz = 12.7 mag/arcsec\_ Lez = 10 Lz Wave error :  $\lambda$ /170 rms Exposure : 10 h in N band (10.2 ± 2.6 µm) with 20 square meters of aperture , in 37 elements Opposite quadrant subtracted





## The theoretical contrast advantage of hypertelescopes with respect to "Book Design"



• I mage separates the planet's peak from most zodi & exoZodi collected by the sub-apertures in a I/d sky patch.

No such separation in Bracewell interferometry
Planet contrast improves as N if star residue is negligible

so: large sensitivity gain

## Array expansion/contraction





 $200 \mathrm{m}$ 

#### Image of binary star

- Needed to match resolution to object ?
- Achieved by sliding elements on M1 spherical locus
- Requires simultaneous adjustment in the pupil densifier using expandable segmented mirror
- Achieves zooming in the direct image.
- Compatible with coronagraph, the exit pupil being invariant



- Zoomable pupil densifier accommodates array expansion, achieved by sliding elements on M1 spherical locus
- Resolution proportional to aperture size
- Compatible with coronagraph, the exit pupil being invariant



- Produces array of 10-100 monochromatic images
- Also white image on direct camera accessed by wheel
- design usable for visible and I R

## Element d'hypertélescope (dessin par Boeing/SVS)

## Réglage des interféromètres: Recherche de franges à N faisceaux

• Généraliser la méthode de Michelson ?



### Conclusions

# • L'architecture hypertélescope est retenue pour la poursuite de l'étude NASA

• Mentionnée par NASA et ESA comme la solution pour le long terme