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First: Briefly and qualitatively review current concepts of
subduction

Next: Make a step to an aspect of subduction systems,
which has been largely overlooked in past 5 decades.

This aspect, called , may bring, among other, a slab-
strike parallel forcing into play



Lithosphere subduction:
The largely trench-perpendicular perspective
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Frame fixed to the deep mantle: Example: Back-arc basin formation caused by

crucial for proper physical : -
incorporation of the viscous coupling rollback away from a mantle-stationary overriding

between the mantle, slab, and plates plate.
Trench retreat

mantle
resistance

The fundamental difference between the two scenarios is the
slab-mantle coupling.

This will excite a different stress field in the slab that may be oy overriding
reflected in focal mechanisms (even if it is only subtle) and 1
which may have impact on the tectonic evolution overhead

no lateral slab ¥
motion in the
mantle




Example: Trench retreat AND overriding plate
escape: Africa-Eurasia convergence across the
Hellenic trench
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Aegean back-arc extension is possibly caused
by slab rollback AND overriding plate escape

Suggested by plate & crustal kinematics in a
modern mantle reference frame.
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Example: Trench retreat AND overriding plate
escape: Africa-Eurasia convergence across the
Hellenic trench

Aegean back-arc extension is possibly caused
by slab rollback AND overriding plate escape

Suggested by plate & crustal kinematics in a
modern mantle reference frame.
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African plate motion (magenta) and GPS motions (blue)
in the mantle frame of Doubrovine et al. 2012
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This briefly summarizes some of the current concepts of styles of

subduction (for more see papers by e.g. Heuret and Lallemand 2006;
Schellart et al. 2007, 2008; Funiciello et al. 2008)

A mantle frame of reference is required for identifying the style of
subduction (rollback .. stationary .. roll-forward)
iInvolving the regional control by

- slab pull

- absolute motion of the subducting plate
- absolute motion of the overriding plate

and in addition controlled by:
- the viscous coupling with the mantle
- effects of phase changes and viscosity transition to the lower mantle

The forcing of trench and slab curvature is still not well understood

although it is consistent with the trench-perpendicular nature of slab pull,
modelling shows.
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Dragging of the Burma slab

by the absolute motion of Yellow: Indian motion parallel to plate boundary
the Indian plate

Blue: GPS motions
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Banda Arc subduction: a less
straightforward case of slab dragging
Spakman and Hall 2010)

Australian plate







2|

Absolute plate motions and GPS



Mantle structure and crustal motions




Mantle structure and crustal motions

The Banda slab is part of
and attached to the

Australian plate (Spakman
and Hall 2010)




Mantle structure and crustal motions

The Banda slab is part of
and attached to the

Australian plate (Spakman
and Hall 2010)

The motion in northern
Banda is similar to that of
the Australia plate but
reduced in amplitude

A




Mantle structure and crustal motions

The Banda slab is part of
and attached to the

Australian plate (Spakman
and Hall 2010)

The motion in northern
Banda is similar to that of
the Australia plate but
reduced in amplitude

This suggests NNE slab
dragging of the Banda slab
by the Australian plate.
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. . L In a mantle frame:
Motions in the Australia-fixed frame suggest Rollback to the east and increasing

rollback to the south and east NNE slab dragging
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Absolute plate motion:
Slab-Mantle coupling

4 Ma

Increasing mantle resistance
against NNE transport of the

northern slab
Progressive slab folding, surface

contraction and counter-clockwise
rotation results from mantle
resistance against northward
transport of the Seram slab

Absolute plate motion frame
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Western Mediterranean tectonic evolution, mantle structure, and the dynamics of slab rollback

Geological/Tectonic reconstruction
(van Hinsbergen et al. Tectonics, 2014)
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color = flow speed Modelling of the subduction evolution (Chertova et al, 2014) starting at ~ 200 km depth




The combination of various seismological inferences, tectonic reconstruction of the
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The combination of various seismological inferences, tectonic reconstruction of the
region and dynamic modelling of slab evolution reveals the geometry and
connections of the slab to the African and Iberian plates.

The slab edge is
under the African
margin / internal Rif
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The combination of various seismological inferences, tectonic reconstruction of the
region and dynamic modelling of slab evolution reveals the geometry and
connections of the slab to the African and Iberian plates.

The slab edge is
under the African
margin / internal Rif

- The African and |berian lithospheres | No lithospheric mantle under
are still largely continuous. the eastern internal Betics
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through the mantle by their absolute plate motion (??)
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Dynamic modelling in a mantle
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Dynamic modelling in a mantle
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Slab dragging is resisted by the viscous mantle in a
direction roughly opposite to absolute plate motion leading to a
5-15 km indentation of the African margin by the slab.
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Slab dragging is resisted by the viscous mantle in a
direction roughly opposite to absolute plate motion leading to a
5-15 km indentation of the African margin by the slab.

Mantle-fixed Mantle-resisted slab dragging can explain all first-order tectonic
frame features of the region since ~8 Ma (Spakman et al. 2018)
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or does slab dragging occur more generally?
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(although for the lower part mostly within the formal error ellips).
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Along-strike motion field in the slab relative to the point to the lower right.

It shows a systematic northward motion component that decreases with depth
(although for the lower part mostly within the formal error ellips).

This pattern can be explained by mantle-resisted northward slab dragging that
holds back the lower part of the slab relative to the top part leading to a state of
strike-parallel shear



Slab dragging of the Tonga-Kermadec slab was in fact recorded earlier (but not
interpreted) by placing relative tectonic reconstructions in a mantle frame
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Slab dragging of the Tonga-Kermadec slab was in fact recorded earlier (but not
interpreted) by placing relative tectonic reconstructions in a mantle frame
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... and slab dragging is also
Sdrolias and Muller 2006 predicted for the Izu-Bonin-
Mariana subduction




Off-dip oriented P-T axis of major events between
200-400 km along strike of the Kurile slab (Christova 2015)
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Off-dip oriented P-T axis of major events between
200-400 km along strike of the Kurile slab (Christova 2015)
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Conceptually, the mantle-resistance against trench-parallel slab dragging may
Induce a slab-strike parallel shear stress field in the slab and a compressive stress
along the entire slab edge. This may trigger slab-strike parallel components of
rupture/displacement as well as horizontal strike-parallel P-axes
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trench-parallel component of slab motion

Conceptually, the mantle-resistance against trench-parallel slab dragging may
Induce a slab-strike parallel shear stress field in the slab and a compressive stress
along the entire slab edge. This may trigger slab-strike parallel components of
rupture/displacement as well as horizontal strike-parallel P-axes

Slab dragging may have a much wider impact on subduction plate boundaries.
Conceptually, it may help shape subduction arcs, it may underlie vertical
segmentation of the slab, and may have a significant impact on the tectonic
evolution of the crust overhead.



