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Model description
We perform our experiments both with a 2D and 3D Eulerian mesh, both with open and closed
boundary conditions on the left and right side boundaries. Open boundaries are implemented by
imposing a lithostatic pressure condition for the normal stress on the boundary, Plith=σn, which
proves to minimize the side boundary influence on the flow pattern around the slab. We solve
for the coupled equations of conservation of momentum and energy in Boussinesq
approximation for an incompressible flow using SEPRAN, a general FE modeling package.

Figure 2. Initial temperature 
distribution (derived from  
cooling of a semi-infinite space)
and boundary conditions 
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Influence of different side-boundary conditions

Figure 4. Evolution of the subduction process for models with different side boundary conditions:
A. Open boundaries
B. Open right, closed left boundary

The role of the overriding plate

Introduction
Our Topo-4D project is concerned with the 4D evolution of
the Western-Mediterranean subduction systems from ~30 Ma
until Present. Slab rollback is an important geodynamic
process in this evolution which strongly affects the
development of surface geology. Nowadays it is observable
in GPS motions and long standing rollback is visible in
mantle tomography models.
We have started our project with 2D numerical model
simulations of self-consistent slab rollback under different
initial conditions. We investigate the influence of several
factors controlling the subduction process as well as
boundary conditions and different domain size on the
subduction dynamic process. At present, our research is
focused on 3D models, particularly, investigation of open
boundary conditions versus closed and different aspect ratio
models.

Figure 1. Study region and qualitative 
geodynamic evolution scenario of Spakman, 
Wortel3

Rheological structure
We use a composite rheology
consisting of pure diffusion and
power-law creep. The top of the
subducting lithosphere and low
viscosity wedge (LVW) consists
of a low-viscosity material (1019

Pas) which represents hydrated
sediments and basalts. The
material is defined on tracer
particles, that are advected by the
flow.
Figure 3. A. Vertical viscosity profile 
B.  Initial rheology field consistent with 
open  sidewalls

Figure 6. Evolution of the subduction process for a model with open boundaries and 
fixed overriding plate(on the left) and model with closed right boundary. The imposed 
conditions on the overriding plate affect the subduction dynamics.
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Speed of the rollback for the models with
different aspect ratio and open boundaries.

Figure 5. Speed of the rollback for models with different aspect 
ratio(shown in different colors) after scaling the velocity for the effect of 
increased mechanical dissipation  in a wider box. 
Scaling was done in respect to model with 6:1 aspect ratio.
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L1 and V1- are the length and velocity in the 
model with aspect ratio 6:1
L2,V2- length and velocity for the investigated 
model

The 2D experiments are extended to 3D configuration

Figure 7.   Initial temperature and 
velocity field for 3D model with open 
boundary conditions on the vertical 
boundaries

Note the different subduction dynamics in models A,B,C and D resulting from different boundary conditions.

Symbol Meaning Value Dimension
Age of the oceanic lithosphere 100 Ma

Activation volume:

Vdif diffusion creep 3-5 cm3/mol

Vdis dislocation creep 8-14 cm3/mol

Activation energy:

Edif diffusion creep 240 KJ/mol

Edis dislocation creep 423 KJ/mol

dT Vertical temperature contrast 1700 K

Intraplate stress in the overriding plate5 0-36 MPa

Parameters of the experiments

 Center of Earth Evolution and Dynamics, University of Oslo, Norway

Department of Earth Sciences, Utrecht University, the Netherlands,  
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First: Briefly and qualitatively review current concepts of 
         subduction

Next: Make a step to an aspect of subduction systems, 
         which has been largely overlooked in past 5 decades.

This aspect, called slab dragging, may bring, among other, a slab-
strike parallel forcing into play
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Slab buoyancy force (with depth varying contributions)
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normal stress (tension or compression) depending on slab motion and vigor of mantle flow
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Lithosphere subduction:  
The largely trench-perpendicular perspective

After: Billen, 2008
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rollback away from a mantle-stationary overriding 
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Frame fixed to the deep mantle: 
crucial for proper physical  
incorporation of the viscous coupling 
between the mantle, slab, and plates

Trench retreat
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mantle 
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The fundamental difference between the two scenarios is the 
slab-mantle coupling. 
This will excite a different stress field in the slab that may be 
reflected in focal mechanisms (even if it is only subtle) and 
which may have impact on the tectonic evolution overhead

slab-induced 
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escape: Africa-Eurasia convergence across the 
Hellenic trench 

African plate

Eurasian plate

Aegean back-arc extension is possibly caused 
by slab rollback AND overriding plate escape

Aegean Basin

African plate motion (magenta) and GPS motions (blue)

in the mantle frame of Doubrovine et al. 2012 

Suggested by plate & crustal kinematics in a 
modern mantle reference frame.
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Example: Trench advance by roll-forward of the slab forced by the advancing motion 
of the subducting plate and accommodated by the escape of the overriding plate

At present: Hindu-Kush 

In the Past: during evolution of India-Eurasia collision (van Hinsbergen et al. 2018)

Trench advance

At present: 

Marianas-Philippines Sea plate

e.g. Cizkova and Bina 2015
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involving the regional control by 
    - slab pull 
    - absolute motion of the subducting plate 
    - absolute motion of the overriding plate

and in addition controlled by: 
    - the viscous coupling with the mantle
    - effects of phase changes and viscosity transition to the lower mantle

The forcing of trench and slab curvature is still not well understood 
although it is consistent with the trench-perpendicular nature of slab pull, 
modelling shows.
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Dragging of the Burma slab 
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Magenta: absolute motion of Indian plate

Blue: GPS motions 
Yellow: Indian motion parallel to plate boundary
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Banda Arc subduction: a less 
straightforward case of slab dragging  

(Spakman and Hall 2010)
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The Banda slab is part of 
and attached to the 
Australian plate (Spakman 
and Hall 2010)

The motion in northern 
Banda is similar to that of 
the Australia plate but 
reduced in amplitude

This suggests NNE slab 
dragging of the Banda slab 
by the Australian plate.

Mantle structure and crustal motions
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Geological/Tectonic reconstruction
 (van Hinsbergen et al. Tectonics, 2014)

Modelling of the subduction evolution  (Chertova et al., 2014)
Temperature surface;       view 
starting at ~ 200 km depth

Temperature surface  ;      
color = flow  speed
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The combination of various seismological inferences, tectonic reconstruction of the 
region and dynamic modelling of slab evolution reveals the geometry and 
connections of the slab to the African and Iberian plates.

No lithospheric mantle under 
the eastern internal Betics

Active lithosphere tearing (?)

The African and Iberian lithospheres 
are still largely continuous.

The slab is connected to both plates and may be dragged 
through the mantle by their absolute plate motion  (??)

The slab edge is 
under the African 
margin / internal Rif

Spakman et al. 2018
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Is dragging of the Burma, Banda, and Gibraltar slabs 

exceptional because of their peculiar geodynamic setting, 

or does slab dragging occur more generally?
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reconstruction of the SW Pacific to the mantle 
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However, in a mantle frame both the Australian 
plate and the Pacific plate have a strong 
northward component of absolute plate motion 
(here shown for the Pacific plate). 

In an Australia-fixed frame, the Pacific plate 
moves westward and the Tonga-Kermadec 
slab subducts westward. 
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Particularly, the absolute motion of the Pacific 
plate  leads to 1000~1200 km northward 
dragging of the T-K slab during the past 30 Myr.

However, in a mantle frame both the Australian 
plate and the Pacific plate have a strong 
northward component of absolute plate motion 
(here shown for the Pacific plate). 

In an Australia-fixed frame, the Pacific plate 
moves westward and the Tonga-Kermadec 
slab subducts westward. 
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van de Lagemaat et al. (2018) tied the tectonic 
reconstruction of the SW Pacific to the mantle 
by using remnants of past subduction as mantle 
anchor points (van der Meer et al. 2018) 

Trench motion relative to the mantle shows a 
strong northward slab transport.

Note: As for the Gibraltar region, the 
relative motion frame masks large scale 
slab dragging.
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Such slab deformation is substantiated by 
numerical experiments (Chertova et al. 2018, “Mantle 
flow influence on subduction evolution”)



3D slab deformation modelling tracking slab 
morphology change resulting from an imposed 
uniform trench-parallel mantle flow

Blue: slab morphology in case there is no forced 
mantle flow

Yellow: slab morphology when mantle is inflowing 
from the left at a rate of 3 cm/yr.
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uniform trench-parallel mantle flow

Blue: slab morphology in case there is no forced 
mantle flow

Yellow: slab morphology when mantle is inflowing 
from the left at a rate of 3 cm/yr.
This mimics the situation in which the slab would 
be dragged to the left at a rate of 3 cm/yr through 
a mantle at rest, as the Tonga-kermadec slab may 
have undergone. 

Such slab deformation is substantiated by 
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flow influence on subduction evolution”)



3D slab deformation modelling tracking slab 
morphology change resulting from an imposed 
uniform trench-parallel mantle flow

Blue: slab morphology in case there is no forced 
mantle flow

Yellow: slab morphology when mantle is inflowing 
from the left at a rate of 3 cm/yr.
This mimics the situation in which the slab would 
be dragged to the left at a rate of 3 cm/yr through 
a mantle at rest, as the Tonga-kermadec slab may 
have undergone. 

The viscous slab-mantle coupling causes strong 
trench-parallel deformation, with in addition 
strong deformation of the slab edge, combining 
into a complex 3D-state of slab stress.

Such slab deformation is substantiated by 
numerical experiments (Chertova et al. 2018, “Mantle 
flow influence on subduction evolution”)
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(although for the lower part mostly within the formal error ellips).



Nothard et al. 1996 Distributed deformation in the subducting lithosphere at Tonga

Along-strike motion field in the slab relative to the point to the lower right. 

It shows a systematic northward motion component that decreases with depth
(although for the lower part mostly within the formal error ellips).

This pattern can be explained by mantle-resisted northward slab dragging that 
holds back the lower part of the slab relative to the top part leading to a state of 
strike-parallel shear
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Off-dip oriented P-T axis of major events between 
200-400 km along strike of the Kurile slab (Christova 2015)

A component of slab-strike parallel left-lateral 
shear is common to these events that laterally 

sample the entire slab
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Conceptually, the mantle-resistance against trench-parallel slab dragging may 
induce a slab-strike parallel shear stress field in the slab and a compressive stress 
along the entire slab edge. This may trigger slab-strike parallel components of 
rupture/displacement as well as horizontal strike-parallel P-axes
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Conceptually, the mantle-resistance against trench-parallel slab dragging may 
induce a slab-strike parallel shear stress field in the slab and a compressive stress 
along the entire slab edge. This may trigger slab-strike parallel components of 
rupture/displacement as well as horizontal strike-parallel P-axes

Slab dragging may have a much wider impact on subduction plate boundaries. 
Conceptually, it may help shape subduction arcs, it may underlie vertical 
segmentation of the slab, and may have a significant impact on the tectonic 
evolution of the crust overhead.   
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