

Structure et dynamique du manteau profond de la terre

2-Les grands enjeux et la tomographie sismique

Barbara Romanowicz - Cours 2012 -Chaire de Physique de l'Intérieur de la Terre Collège de France 8 Octobre 2012

Distribution des Points chauds

Foulger, 2011

Les "trapps" continentaux

- Epanchements massifs et soudains de laves basaltiques en quantités bien supérieures à tout processus volcanique actuel.
- Souvent associés avec le début de l'activité volcanique de points chauds majeurs, dont l'origine est sans doute dans le manteau profond
- Souvent associés à l'ouverture de rifts continentaux
- Pourraient être les « têtes » de panaches mantelliques dont les « queues » se manisfestent encore par le magmatisme des points chauds?

Provinces de trapps associés à des points chauds actifs et dont l'éruption remonte à moins de 250 Ma.

Fig. 1. Distribution of flood basalt provinces erupted in the last 250 million years and associated active hot spots and volcanic traces; CRB, Columbia River basalts.

-> Injection d'eau dans du glucose à débit constant

-> Viscosité de l'eau 10⁴ fois plus faible que celle du glucose

Richards et al., 1989

- Quelle est la "source" des panaches mantelliques et quel est leur rôle dans la convection mantellique?
 - A quel niveau dans le manteau se situe cette source(670km, CMB?)
 - Représente-t-elle un réservoir "primordial" de matériau terrestre non échantillonné par les basaltes des rides océaniques?
 - Si la source est à la CMB, le flux de chaleur transporté par les panaches nous renseigne sur la proportion de chauffage par le bas (noyau) et chauffage interne par radioactivité

• Existence, nature et rôle des panaches mantelliques

- Hétérogénéités géochimiques
 - Laves basaltiques
 - MORB "Mid ocean ridge basalts"
 - OIB "Ocean Island Basalts"
 - Composition isotopique différentes pour certains éléments trace

Hétérogénéités de l'hélium

Unité Ra= rapport atmosphérique Photosphère solaire: 318Ra

³He primordial ⁴He radiogenic from decay of ²³⁵U ²³⁸U and ²³²Th

Parman, 2007

Hétérogénéités dans le manteau terrestre

- Tectonique des plaques -> hétérogénéités chimiques
 - Volcanisme, fusion-> ségrégation
 - Subduction: réinjecte les produits du volcanisme dans le manteau-> mélange
- Echantillons du manteau semblent appauvris en certains éléments lithophiles incompatibles, en particulier les éléments radioactifs.
 - => réservoirs "cachés" échantillonnés par les panaches?
 - => budget thermique de la terre (proportion de chauffage par radioactivité et par chauffage par le bas)

Le cycle géodynamique vu par les géochimistes

Allègre, 2008

Budget thermique et composition du chimique: sources d'hétérogénéités

- On connaît la composition en éléments radioactifs (U, Th, K) de la croûte continentale
 - Contient ~50% U, Th.
 - Manteau supérieur appauvri
- Comment estimer le reste?
 - Composition moyenne de la terre => bilan des éléments radioactifs: ~20TW
 - Ceci représente près de la moitié du flux de chaleur total ~46 +/- 3 TW

Flux de chaleur

Moyenne continents: 65 mW/m² Moyenne océans: 101 mW/m²

Distribution des mesures de flux de chaleur

Composition moyenne de la terre

- 2 types de données:
 - Météorites
 - Echantillons du manteau
- Modèle de référence "classique" = modèle chondritique
 - Modifié par l'évolution différente de la nébuleuse solaire (haute T) et de l'intérieur de la terre (basse T)

Quelle est la composition de la terre?

Nébuleuse

Mélange hétérogène de composants avec des températures de formation différentes et dans des conditions différentes

Planète: Mélange de métal, silicates, éléments volatiles

Chondrites

- Échantillons de matériau du système solaire datant d'avant la fusion et la différentiation manteau/ noyau
 - Composition varie suivant les conditions dans la nébuleuse solaire: volatilité (temp. de condensation)
 - Haute temp. de condensation (>1300K): RLE (refractory lithophile elements), ex. U Th -> ont le meme rapport de masse dans toutes les chondrites
 - Potassium: K température de condensation moyenne
- Chondrites CI carbonacées s'accordent le mieux avec les concentrations du soleil, mais renferment plus de volatiles que la terre (H₂0,CO₂)

% en masse

McDonough, CIDER 2010

 Chondrites: échantillons de matériau du système solaire datant d'avant la fusion et la différentiation manteau/noyau

 Les CI chondrites carbonacées ont une composition semblable à celle du soleil, qui représente la "moyenne" du système solaire

Modifiées par perte d'éléments volatiles suivie de réduction (perte d'O₂)

Elements in Order of Atomic Mass

¹⁴⁶Sm->¹⁴²Nd t_{1/2}= 103 My

Que signifient ces données pour la terre?

- Système solaire hétérogène
- Chondrites servent de référence
- Planètes ≠ chondrites ?

Data from: Gannoun et al (2011, PNAS) Carlson et al (Science, 2007) Andreasen & Sharma (Science, 2006) Boyet and Carlson (2005, Science) Jacobsen & Wasserburg (EPSL, 1984)

^{Bilan} thermique de la terre dépend du modèle de référence

Lay, Hernlund, Buffett, 2008

- Introduction dans les années70-80 par les géochimistes du concept de stratification du manteau avec séparation à la discontinuité de 660 km
 - Les MORB échantillonnent le manteau supérieur appauvri
 - Les OIB échantillonnent le manteau inférieur primordial
- Mais... la tomographie sismique indique que certaines plaques de subduction pénètrent dans le manteau inférieur
- Modèles géochimiques plus élaborés:
- Par exemple, Boyet and Carlson (2005, Science):
 - Le réservoir de faible rapport Sm/Nd serait de la crôute basaltique riche en éléments incompatibles, tombée au fond du manteau pour former une région isolée de la D"
 - Le processus responsible aurait du se produire dans les premier 10Ma de la formation du système solaire pour empêcher le réservoir appauvri de dépasser la valeur actuelle observée dans les MORBs

Convection à "une couche"

Convection à "2 couches"

"Abyssal Layer"

D'après Albarède et Van der Hilst, 1999

Communication ou non entre le manteau supérieur et le manteau inférieur?

Rôle de la discontinuité de 660 km

Topographie des discontinuités sismiques due aux variations latérales de température

⇒ Estimation "sismique" de la pente de Clapeyron de la discontinuité de 660 km , ~-2 à -3.5 Mpa/K => présence d'eau dans la zone de transition

Lebedev et al., 2002

Trois modes possibles de convection suivant la pente de Clapeyron de la discontinuité de 670 km

Viscosité constante! 50% Chauffage interne

Fukao, 2009 D"après Yanagisawa et al., 2005

Croûte des MORBs est plus dense que le manteau ambiant dans le manteau profond

Fukao (2009) D'après Hirose et al. (2005)

Que nous enseigne la tomographie sismique?

• Principe de la tomographie sismique

Tomographie sismique

Dans la méthode classique, on utilise les variations dans les temps de parcours des ondes sismiques pour déterminer les régions de vitesses lentes ou rapides par rapport à un modèle de référence (par exemple, le PREM), dans le cadre de la théorie des rais -

problème inverse non-linéaire qu'on linéarise, avec des itérations successives

Sismicité globale 1977-1992

Earthquakes > Magnitude 5.0, 1985 - 1996 From NEIC

 Temps de propagation des ondes ee volume: P, PP, S, SS Arrivées d'énergie bien séparées sur les sismogrammes, mesures Des temps précises.

En général:

- théorie des rais
- méthodes de "back-projection"
- itératives
- paramétrisations "locales", par exemple en "blocs"

COMPRESSIONAL (2670 KM-CMB)

Tomographie globale "P"

Tomographie sismique "P"

Van der Hilst et al., 1998

Replumaz et al., EPSL, 2005

<u>Ondes de volume P et S</u>

- l'énergie se propage à travers l'intérieur de la terre focus
- Les "rais" se courbent et sont réfléchis sur les discontinuités de structure
 - -> Loi de Descartes (Snell's law)

<u>Ondes de surface</u>

- l'énergie se propage le long de la surface de la terre
- Décroît avec la profondeur (exponentiellement)
- Dispersives: la vitesse de prop. dépend dela fréquence
- Contiennent l'énergie longue période engendrée par les séismes
- Grandes amplitudes dominent les sismogrammes

Noyaux de sensibilité des ondes de Rayleigh en fonction de la profondeur à différentes périodes

Tomographie de forme d'onde:

Coupes horizontales à travers le manteau

Bleu = rapide ~ froid

Rouge = lent ~ chaud

Amplitude rms des variations latérales des vitesses d'ondes S en fonction de la profondeur

Spectre de puissance de 3 modèles

Isotropic Vs Profondeur = 2800 km

Romanowicz and Gung, 2002

Méga-panache du Pacifique et anneau de vitesses rapides qui l'entoure

Composante de la structure en "Degré 2"

