

Fluids and earthquakes in the forearc region of subduction

B. REYNARD A.C. GANZHORN, H. PILORGÉ

ECOLE NORMALE SUPÉRIEURE DE LYON, CNRS, UNIVERSITÉ DE LYON, FRANCE

Fluid-rock interactions in subduction zones

Fluids released by the dehydrating plate: -generation of earthquakes T<700°C in the forearc region -melting and arc volcanism T>700°C

After Kirby et al. (1996); Shelly et al. (2006); Wada et al. (2008); Reynard (2013).

Fluid-rock interactions in subduction zones

Fluids are likely involved in earthquake cycle

(Sibson, 1981; Sleep & Blanpied, 1994)

Fluids are likely involved in earthquake cycle

Up-dip Transition and Slow Slip

Fluids are likely involved in slow seismicity (LFE, ETS, SSE, SE, ...) Precursors of large megathrust earthquake?

Propagation of Slow Slip Leading Up to the 2011 $M_{\rm w}$ 9.0 Tohoku-Oki Earthquake

Aitaro Kato,* Kazushige Obara, Toshihiro Igarashi, Hiroshi Tsuruoka, Shigeki Nakagawa, Naoshi Hirata

Complex petrologic and metamorphic context

Monviso Alps

Track fluid interactions with minerals and rocks

HP experiments Belt press 1.5-3 GPa 300-700°C

Fluid/rock interaction is elusive: isotopic tracer D/H Raman mapping of D/H ratio in H-bearing minerals

Raman imaging (540°C)

Arrhenius laws for D/H solid state diffusion in hydrous minerals

High activation energies ~ 170 kJ/mol instead of <130 kJ/mol for other minerals Reinvestigation of D/H diffusion in Ca-AI hydrous phases and amphiboles

From D/H ratio to active porosity at HP-HT

Active porosity at HP

What do we know about rock porosity in subduction zone?

low pressure (<50 MPa) measurements for serpentinites and gabbro (Katayama et al., 2012 ; Kawano et al., 2011)

textural equilibrium experiments 1 GPa (e.g. Wark & Watson, 1998; Miller et al., 2014).

No fluid reactivity

Domain of interest : $100 < T < 700^{\circ}C$, 0.1 < P < 3 GPa Highly anisotropic minerals (clays)

Our approach: HP experiment with isotopic tracer (D) diffusion

Natural rock chip/core

advantage of lattice diffusion (D/H inter-diffusion)

SEM image

3 target natural rocks:

blueschist: metamorphic oceanic crust serpentinite: hydrated mantle wedge chlorite schist: metasomatic plate interface

Ganzhorn et al., in prep.

Quantification of H-D exchange

Isotopic exchange map

Serpentinite, 315°C, 3 GPa, 12h

D ≈ 10⁻²⁰ m²/s (Pilorgé et al., 2017) x ≈ $\sqrt{(D^*t)}$ ≈ 20 nm (< 500 nm = beam size)

D-bearing zones = locations of fluid-rock interfaces (cracks or grain boundaries) D concentration proportional to their number/unit length

65 <u>µm</u>

Exchange map vs. SEM observations

Active porosity (and permeability)

Peacock et al., Gology 2011

Ganzhorn et al., in prep.

Conclusions

- A new method to constrain active porosity at high-pressure based on isotopic tracing at P-T relevant to subduction zones
- A broad range of behaviors from impermeable (chlorite schist) to permeable (serpentinite, blueschist) with pororsity variations in response to deformation

Conclusions

