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Motivation: Modelling of geodynamic processes

CURRENT AIMS:

= Understanding processes in the Earth
interior

= Mitigation measures, e.g. earthquakes

May et.al., 2013 & Crameri et al., 2012

geodynamic models

Fundamental laws| | Constitutive relations

e.g. key ingredient:

conservation of mass,
momentum,energy RH EOLO GY




Rheology: an extrapolation problem
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Log-Log stress-strain rate diagram to Extrapolation to geological conditions
determine the stress exponent n

CURRENT UNCERTAINTY:
= Rheology extrapolated from lab over 10 orders of magnitude
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Rheology: an extrapolation problem

PLAGIOCLASE - the most abundant mineral in the Earth’s crust

Differences in grain size, activation energy and dislocation creep data

activation energy for diffusion creep- average wet and dry activation energy for diffusion creep- only dry
Dislocation c.: Rybacki & Dresen, 2006 Shelton, 1981 Dislocation c.: Rybacki & Dresen, 2006 Shelton, 1981
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No predictive power for geo-material towards high stresses.
Constraint under geological conditions is missing.




Rheology: an extrapolation problem

PLAGIOCLASE - the most abundant mineral in the Earth’s crust

Extrapolation to geological conditions

T=800 °C experiments
subduction not initiated!
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=> This questions our understanding of geodynamic processes!



Groningen gas field (Netherlands)

Figure 1. Groningen seismicity (M >1.5) vs. time.
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=> How confident are we for conditions in the lower crust?



Any hope for a constraint at geologically

relevant conditions?




Mechanically-controlled microstructures
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Pressure and stress directly measured by state-of-the-art analytical methods.

Witnesses of the long-term stress state in the lithosphere!
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Unconventional Rheometry:



Little bit of background first

Chemical potential and equilibrium

temperature

pressure

composition

=1, (P, T)+RT{lna




Compositional vs. pressure variations

Spatial variation in chemical potential

T =const.
P =const,

-, zconst.

Spatial variation in pressure

T =const.

Ha=lg = const.

</\>

Chemically- controlled

fast viscous relaxation and
slow chemical diffusion

Mechanically- controlled

slow viscous relaxation
and fast chemical diffusion




The effect of pressure variation on chemical
redistribution

Equilibrium under external force: pressure variations

Gases

Atmospheric pressure decreases with altitude
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The effect of pressure variation on chemical
redistribution

Equilibrium under external force: pressure variations

Polymers Solids???

Grt Host (e.g. garnet)
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Equilibrium under pressure gradients:
Unconventional barometry
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Unconventional Rheometry:
Key steps of the alternative approach




Unconventional Rheometry:
Key steps of the alternative approach

1/ Chemically zoned mechanically-controlled microstructure, e.g. inclusion-host environment

Composition & Pressure coupling
compositional profile  density profile pressure profile
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Unconventional Rheometry:

2/ Classical mechanics: From pressure to stress decay

Thermodynamic method to derive
pressure from direct observations

pressure

distance

force

balance

Differential stress estimates

differential stress
®
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3/ Classical mechanics: from stress decay to effective stress exponent (n)

differential stress

Differential stress estimates
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Differential stress and strain rate
relation from direct observation
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log_strain rate



Unconventional Rheometry:

4/ Results: From composition to apparent stress exponent and critical stress
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Results & Comparison

New calibratiqn_lof the pllagiocllalse flowr Iawsla.t 800°C |

il

o our data

1015

1014

10-13

1012 1M 1010 109 108
strain rate, [1/s]

107




stress, [kbar]

Results & Comparison

_New calibration of the plagioclase flow laws at BIOIOOC _
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___New calibration of the plagioclase f!owllaws at BOIOOC

Results & Comparison
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stress, [kbar]
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calibration of the plagioclase flow laws at 80|O°C
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stress, [kbar]

Results & Comparison

New calibration of the plagioclase flow laws at 800 °C
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Concluding remarks:

Mechanically-controlled microstructures provide information on
the long-term stress state in the lithosphere

New approach to infer rheology directly from natural samples, for
naturally relevant T, grain size and time scale.

Independent of conventional constitutive laws: based on
equilibrium thermodynamics and classical mechanics

Constraint for the extrapolation — an inspiration also for olivine and
pyroxene



