Seismic Evidence for Magma Assisted Continental Rifting

Michael Kendall University of Bristol

Imperial College

or 10 years of fieldwork in Ethiopia

- Atalay Ayele, Elias Lewi Addis Ababa University
- Mike Kendall, Anna Stork, James Wookey Bristol
- Nick Johnson, Kathy Whaler Edinburgh
- Ghebrebrhan Ogubazghi, Berhe Goitom Eritrea Inst of Tech
- James Hammond, Ian Bastow Imperial College
- Graham Stuart, **Dave Thompson**, Tim Wright Leeds
- Cindy Ebinger, Manahloh Belachew Rochester
- Catherine Rychert, Derek Keir NOC Southampton

East-Africa Rift System: juvenile continental rifting to oceanic spreading

East Africa - Topography (E.A.P. - East African Plateau)

East Africa - Seismicity (Dots) and Volcanoes (Triangles). (The Nyanza craton is shown by the shaded pattern)

Birth of an Ocean

- Continental rifting fundamental component of plate tectonics
- Rift valley has played a key role in the evolution of humans climate, habitability
- How and why do continents break apart?

The volcano-seismic crisis in Afar -Sept, 2005

Anthony Philpotts, October 2005

Afar (Sept 2005): a "once in a generation" event.

- 60 km of plate boundary opened by up to 8 metres.
- 2.5 km³ of new crust created.
- First rifting event above sea level in the era of satellite geodesy.
- First eruption of rhyolite in Africa in over a century.
- UK/Ethiopian/US team first on the ground.

Wright et al., 2006

Field et al., 2013

Wright et al., 2012

Breaking a plate.

Tectonic Stretching

Buck, 2004

So why is Africa rifting?

- Forces available for rifting
 - Distant subduction
 - Gravitational potential energy
 - Basal traction compression vs extension
 - Preexisting weaknesses and lithospheric thin spots

Africa: superplume ... superswell

Africa's dynamic topography

Episodic memory No longer unique to humans

Cell cycle How Ink (blocks G)

Extrasolar planets Interferometric imaging

Ritsema and Allen 2003 Lithgow-Bertelloni and Silver 1998

Gravitational potential energy

"Once quantified, it appears that deviatoric stresses alone are not sufficient to overcome the strength of the continental lithosphere in the Eastern rift."
Stamps et al., 2010

Plate Force Paradox:

Plate forces are up to an order of magnitude too small to break thick cold continental lithosphere (Buck 2004).

- Continental rifting fundamental component of plate tectonics
- How and why do continents break apart?

Which seismic methods can be used to address this question?

Seismic methods for imaging

Receiver functions – discontinuity structure;
 Vp/Vs ratios

(a) Pure Shear

Seismic methods for imaging

 Tomography – velocity structure; thermal anomalies; partial melt

LISTRIC FA		STRETCHING	BRITTI DUCTI	LE CRUST
		HOT MANTLE		моно
		Melt?	MAN	TLE
	9100 9000 9000 9000			
University of BRISTC				

⁽a) Pure Shear

Seismic methods for imaging

• Seismic anisotropy = mantle flow; aligned melt

⁽a) Pure Shear

Mantle plume

(a) Pure Shear

Mantle plume

(a) Pure Shear

Fieldwork

Ethiopia Afar Geoscientific Lithospheric Experiment 2001 - 2003

• RLBM (Horn of Africa)

5 stations: Jun 1999 - Dec 2002
EKBE (MER)

• 35 stations: Feb 2000 - Dec 2002 • EAGLE (MER)

•55 stations: Oct 2001 - Feb 2003•Permanent stations (IRIS, GEOSCOPE)

•7 stations: Jul 1993 - Present

• Urgency array (Afar)

•9 stations: Oct 2005 - Ma, 2007

•Afar consortium (NERC & NSF)

•51 stations: Mar 2007 – Oct 2009

Danakil Seismic Project

•12 stations: Oct 2009 – Feb 2013

• Eritrea Seismic Project

•6 stations: Jun 2011 – Oct 2012

Nabro Urgency Project

•8 stations: Aug 2011 – Oct 2012

Seismic station – Biye Kabobe – Ethiopia/Somalia Border

Results

- Tomography
- Receiver Functions
- Seismic anisotropy

Architecture of a superplume

Chemical versus thermal?

Ritsema and Allen 2003

P- and S-wave travel-time tomography Main Ethiopian Rift

- Bastow et al. (GJI, 2005; 2008); Hammond et al. (2013)
- Broad low velocity sheet-like anomaly that cuts through the pan-African fabric; not a conventional plume-like upwelling.

50 – 150 km

Afar Rift

Imperial College London

onsortium

Hammond et al., Geology, 2013

Seismic tomography

- Focused low seismic velocity anomalies in top 150km Melt
- Broad tabular low seismic velocity anomaly to depths of at least 400 km
- Seismically fast Pan-African lithosphere
- Seismic velocities are best explained by high temperatures and melt in elongate inclusions. Huge absolute delay time and R values (Vp/Vs) -> melt
- Latest absolute delay times of anywhere in the world.

41

Longitude

42

43

1.5 -1 -0.5 0 0.5

S-wave % velocity anoma

depth =

75 km

The Stratigraphy of the Lithosphere

Use receiver functions

- Image variations in crust:
 - Moho depth
 - Vp/Vs ratios
- Image variations in the lithosphere (tectonic plate)
 - lithosphere-asthenosphere boundary (LAB)

Receiver Functions: Crustal thickness

Dramatic variations across Ethiopia: 10-50km

 Thinnest crust in northern Afar

Moho depth(km)

- Thickest beneath northern plateau
- Sharp variations at rift flanks

Receiver Functions: Vp/Vs ratios

- Vary from 1.6 beneath the plateaus
- Up to 2.3 in parts of Afar
- •Vp/Vs > 2.0 means melt
- Sharp variations at rift flanks

Crustal Structure: CCP migration

Angus et al., 2010

Crustal Structure: CCP migration

Crustal Structure: CCP migration

The Lithosphere-Asthenosphere Boundary

- S-P conversion
- Common Conversion Point migration
- Clear differences between plateau and rift

The LAB beneath Ethiopia: migrated images

 At ~75km S-wave receiver functions show a velocity decrease beneath the Plateau and a velocity increase beneath most of Afar

(Rychert et al., 2012)

Seismic anisotropy: Shear-wave splitting analysis.

•Counter-clockwise rotation within rift valley

Mechanisms for anisotropy:

- Working model for anisotropy beneath East Africa Rift

- Large-scale flow beneath eastern Africa associated with super-swell.
- Melt focused at plate boundaries - leads to oriented vertical pockets of melt.
- Contribution from pan-African fabric in
 lithosphere away from
 Main Ethiopian rift and
 continental slivers within
 Afar.

- See also Obrebski et al., 2010; Gao et al., 2010; Bastow et al., 2010

Shear-wave splitting tomography

- Based on Wookey (2012)

- Two layer inversion across multiple tectonic domains

Lower layer aligned with density driven mantle flow

Hammond et al., 2013

Upper layer – fossil fabric and melt-induced anisotropy

University of

BRISTOL

Upper layer; Hammond et al., 2013

Stratified upper-mantle beneath the EAR

- Broad low-velocity region of density driven flow
- Focuses upwellings punctuation lithosphere and crust
- Microplate isolation in Afar

Hammond et al., in press, 2013

Magma Assisted Rifting

Tectonic Stretching

•Melt injection leads to much lower yield stresses.

•Deformation (strain) is focused at plate boundaries.

Stress driven melt segregation - most effective at flanks (marginal LAB)

Holtzman and Kendall, G3, 2010

Evidence for plume in the mantle transistion zone?

Thompson et al., 2013

Mantle transition zone

Little topography on the 410 and 660 km

Localised upwelling in the MTZ

Little evidence for thermal anomaly

Thompson et al., 2013

Thompson et al., 2013

The old view

(a) Pure Shear

Conclusions

- Broad thermo-chemical upwelling from the CMB gives rise to more localised upwellings through the MTZ
- Broad region of sub-lithospheric low velocities underlay region and give rise to dynamic topography (SW-NE orientation) – anisotropy reveals dynamic nature of this layer
- Punctuated upwellings through the lithosphere (rift segmentation) mimic surface structure.
- Eroded LAB beneath the rift passive upwelling?
- Observations provide 'fingerprint' of magmaassisted rifting; do not support simple mechanical stretching.

Issues

- Slowest traveltime residuals on Earth and yet the mantle doesn't seem that hot:
 - LAB suggests ridge-like decompression melting
 - Mantle xenoliths (e.g., Rooney et al., 2011; Ferguson et al., 2013)
 - MTZ topography looks unremarkable, but may show fingerprint of water above 410km
- Is chemistry more important? Exotic melts (carbonates or sulfide melt)

