"Does partial melting occur today in the D"-layer? What would happen to the liquids ?"

Laboratoire Magmas et Volcans

Denis Andrault Giacomo lo Nigro Nathalie Bolfan-Casanova Ali Bouhifd

ID27 and ID21, ESRF

Sylvain Petitgirard Gaston Garbarino Giulia Veronesi Mohamed Mezouar

Seismic anomalies in the D" layer

Ultra-low Velocity Zones => Mantle partial melting ?

Lay et al., 2004

(a) D" shear velocity (M gnin and Romanowicz, 2000)

Temperature profile in the deep mantle

Previous melting experiments of the Earth deep mantle

New melting curve determination using X-ray diffraction

Solidus evidences

Liquidus evidences

Comparison with some temperature profiles

A temperature profile compatible with a basal magma ocean ?

CONCLUSIONS

Does partial melting occurs today in the D"-layer ?

Not if "classical" lower mantle temperature profiles are true. Could be possible if

- the core is extremely hot; more than 4150 K at the CMB
- fusible elements are concentrated in this mantle region

What would happen to the liquids ?

Major parameters controllng the relative buoyancy (floatability) between melt and mantle:

Density = Masse / Volume

Volume of melting: ΔV of a few %

 ΔV decreasing with increasing pressure ΔV becomes virtually zero at infinite pressure

Fe-partitioning between solid mantle and melt

Fe is heavier than Mg Fe is bigger than Mg in high-spin state Fe is of same size than Mg in low-spin state

MgO/SiO2 ratio in the liquid

SiO2 is less dense than (Mg,Fe)SiO3 SiO2 is very incompressible

Melting for ~20 seconds

P=78 GPa

Melting for ~2 seconds

P=58 GPa

~2 µm spatial resolution mapping at ID27 Simultaneous with X-ray diffraction ~0.5 µm spatial resolution mapping at ID21 X-ray energy adapted to Fe XRF signal

105 GPa

=> Strong structural interactions between AI and Fe in the perovskite structure

Analytical conditions for FEG-EPMA analysis in Nomura et al., 2011

Using electrons

Beam size 1nm ; Energy: 10 KeV; (Mg,Fe)SiO3

Analytical conditions for XRF analysis in this study

Using X-rays on ID21 beamline

Beam size 0.5 microns ; Energy: 7.2 KeV

In the actual mantle

Farnetani et al., 2002

CONCLUSIONS

Does partial melting occurs today in the D"-layer ?

Not if "classical" lower mantle temperature profiles are true. Could be possible if

- the core is extremely hot; more than 4150 K at the CMB
- fusible elements are concentrated in this mantle region

What would happen to the liquids ?

They would tend to rise toward the surface

And then ?

- A liquid pocket rising in the mantle may cristallize fast
- The liquids can be engaged in a larger uprising movement
- Solidification and loss of Pv grains will favor uprising