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Iaffaldano & Bunge (2015)

finite rotations of Wessel & Kroenke (2008)
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Hotspot Motion (a likely case for Hawaii)

Hawaii Hotspot track (observed, left) and corrected (right) for paleomagnetically inferred plume drift

Tarduno et al. (2009)
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Iaffaldano & Bunge (2015)

finite rotations of Doubrovine & Tarduno (2008)
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Time Scales (thermal)

advective and diffusive time scale

τa =
D

u
, τc =

D2

κ

advection dominates conduction

Pe =
τc
τa

=
Du

κ
>> 1

with

τa advection time scale
τc diffusion time scale
D mantle depth
u typical plate velocity
κ thermal diffusivity
Pe Peclet number

Advection dominates in the mantle away from thermal boundary layers,

making τa the relevant time scale.

Buoyancies evolve on time scales of order 100 Myrs.
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Time scale of evolving buoyancies from convection models

• initialize convection model

• run with one plate stage for a long time

• change to a new plate stage

• run with new plate stage for a long time

• monitor the evolving cross correlation
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Time scale of evolving buoyancies from convection models
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Time scale of evolving buoyancies from convection models
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Time Scales (momentum)

momentum diffusion

τm = D2%/µ

with

τm diffusion time scale
% mantle density
D mantle depth
µ mantle viscosity

mantle flow comes to a halt in under a second if all buoyancy forces were
suddenly removed

see, for instance, Forte (2007)
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Time Scale Momentum Diffusion

Iaffaldano & Bunge (2015)
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Time Scale Momentum Diffusion

Iaffaldano & Bunge (2015)
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Tectonic force balance ∑
Fi = ma

redrawn from Forsyth & Uyeda (1975)
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Tectonic force balance

Frp + Ffr + Fmb + Fbd = 0

redrawn from Forsyth & Uyeda (1975)
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Plate Motion Changes

While plate motions sample the sum of all torques at a certain point
in time, plate–motion changes sample torque variations that have

already been re–equilibrated.

It is often easier to assess variations of torques
rather than the sum of all torques.
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• Neogene
South
Atlantic
Spreading
Variations
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Figure from Sempere et al. (2008), see also Oncken et al. (2006) and many others
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Geologic estimates of Paleo-Andean elevation
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Global Neotectonic Models coupled to Mantle Circulation Models that include

buoyancies from a subduction history

e.g., Iaffaldano et al. (2006), Iaffaldano & Bunge (2006,2009), Iaffaldano et al. (2011), Austermann & Iaffaldano (2013
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Global Neotectonic Models coupled to Mantle Circulation Models that include

buoyancies from a subduction history

Topography

e.g., Iaffaldano et al. (2006), Iaffaldano & Bunge (2006,2009), Iaffaldano et al. (2011), Austermann & Iaffaldano (2013
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Global Neotectonic Models coupled to Mantle Circulation Models that include

buoyancies from a subduction history

Realistic Strength
Envelope

e.g., Iaffaldano et al. (2006), Iaffaldano & Bunge (2006,2009), Iaffaldano et al. (2011), Austermann & Iaffaldano (2013
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Global Neotectonic Models coupled to Mantle Circulation Models that include

buoyancies from a subduction history

Such models may
be used to test
parameters explicitly
against Geodetic &
Paleomagnetic
observations.

e.g., Iaffaldano et al. (2006), Iaffaldano & Bunge (2006,2009), Iaffaldano et al. (2011), Austermann & Iaffaldano (2013
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e.g., Iaffaldano et al. (2006), Iaffaldano & Bunge (2006,2009)
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Similar effects of topography have been observed and modeled for the
recent slow-down of the Arabian and Indian plate, associated with the

rise of the Zagros and Himalaya, respectively.

Topography introduces an additional time scale and links known plate
motion changes to forces that can be quantified.

e.g., Iaffaldano et al. (2006), Iaffaldano & Bunge (2006,2009), Iaffaldano et al. (2011), Austermann & Iaffaldano (2013
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• Paleogene
South
Atlantic
Spreading
Variations
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Compare six plate motion models of the South Atlantic

Colli et al. (2014)
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Two phases of high velocity: up to 70 Myrs (Late Cretaceous) and

between 45 and 10 Myrs (Oligocene – Miocene)
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Geologic estimates of Paleo-Andean elevation
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upper mantle low viscosity zone (a recurrent theme in Geodynamics)

• linear stability

• planform studies

• stress amplification

• pressure driven flow

Busse et al. (2006)

e.g., Hoeink & Lenardic (2008,2010),

Hoeink et al. (2011)
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Poiseuille/Couette flow types

Hoeink et al. (2011)
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Poiseuille/Couette flow types
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trade-off in layer thickness and viscosity reduction

• models favoring a coarse
subdivision of the mantle
into two layers separated at
670 km depth naturally
obtain modest viscosity
contrasts, while providing an
equally good fit to the data
as models with a thin layer
and strong viscosity
reduction

equivalent radial mantle viscosity profiles
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trade-off in layer thickness and viscosity reduction

decay time

τ ∝ µ

h3

there is an ensemble of

LVZ earth models, having

similar values for µ
h3

e.g., Paulson & Richards (2009) figure on the left, Schaber et al. (2009) figure on the right

H.-P.Bunge Rapid plate motion changes 36/46



Observations Scaling Plate Boundary Forces Poiseuille Model tests Conclusions

French, Lekić & Romanowicz (2013)
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from Colli et al. (2014), also Rickers et al. (2013) in North Atlantic, Fichtner et al. (2009) in Australasian region
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Present-day mantle flow inferred through force balance

LVZ velocity values required to balance the current Andean topography by basal

shear for a variety of depths of the LVZ. We exclude small (100 km or less) as

well as big (400 km or more) depth values for the LVZ.

Viscosity
Asthenosphere channel thickness

100 km 200 km 300 km 400 km 500 km

1× 1018 Pa s
5× 1018 Pa s 32.2
1× 1019 Pa s 16.9 24.1
5× 1019 Pa s 6.1
1× 1020 Pa s

Colli et al. (2014)
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Present-day mantle flow inferred through Poiseuille
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• pressure gradient across the
basin:
600 bar (≈ 2 km of rocks)
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Present-day mantle flow inferred through Poiseuille

vx(y) =
1

µ

∆p

∆x
y(h − y)

• pressure gradient across the
basin:
600 bar (≈ 2 km of rocks)

• Poiseuille flow

• velocity: 6–30 cm/yr

The two independent estimates of LVZ velocity
-based on a Force Balance or a Poiseuille argument -

are in remarkable agreement.

Colli et al. (2014)
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Africas Elevation History

• Numereous studies
have assigned
Mesozoic or
Cenozoic ages to
the timing of Africa’s
togographic high
stand.

Burke & Gunnell. (2008)
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Africas Elevation History

French TopoAfrica
program:
Late Cretaceous and
Oligocene ⇔ Miocene
uplift periods

H.-P.Bunge Rapid plate motion changes 43/46



Observations Scaling Plate Boundary Forces Poiseuille Model tests Conclusions

Africas Elevation History

”Kimberlite eruption

ages constrains a

Mesozoic unroofing

pulse, most intense

between 100 to 90 Ma,

while the apatite (AHe)

results also detect as

much as 1.5 km of

Cenozoic unroofing.”

Stanley et al. (2013)
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CONCLUSIONS

• Rapid Plate Motion Changes hold key information on plate boundary
forces and mantle flow.

• Some plate boundary forces are related to topography.

• Some plate motion changes suggest channelised flow in a thin LVZ
layer.

• Poiseuille flows in the asthenosphere link horizontal and vertical
motion, i.e. periods of fast spreading and widespread (epeiorogenic)
uplift, implying that paleo mantle flow could be inferred from multiple
data sets.

Colli et al., Tectonics, Vol 33, 2014

Iaffaldano & Bunge, accepted Annual Reviews, 2015
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