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Overview

Contrasting styles of non-Volcanic
rifted margin formation

Type |: Narrow non volcanic rifted margins

Type II: Wide rifted margins

Effect of lower lithosphere counterflow
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Thermo-Mechanical Model Setup

Crust: Weak Seed: 12 x 10 km

Wet Quartz von Mises plastic
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Model Crust Strength Variation

Model 1 Model 2
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Sensitivity of Rift Mode to Strength Lower Crust
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Huismans and Beaumont, 2001, 2002, 2005, 2008



Cold Non Volcanic Margins
Iberia - Newfoundland

- Magma starved rifting

T

- Exhumation of Mantle Lithosphere
to seafloor

- Final rift stage very narrow with
very narrow crustal necks <100km

38°

- Mantle lithosphere exhumation
. decreases with increasing crustal
=5 neck width

- Progressive deeper levels of ML
in distal positions

c) Southern Transect
E Whale Basin

Huismans and Beaumont, 2004, 2007
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Iberia-NFL Type | narrow margins
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Fig. 1. The Aracuai-West Congo orogen and the adjacent S0 Francisco-Congo craton in the context of West Gondwana. South America-Africa fit
after De Wit et al. (1988). V =Vitdria, S = Salvador: L=Luanda; C=Cabinda.



Wide Hot Rifted Margins with Anomalous Vertical Motions,
Depth Dependent Stretching (and Magmatism ?)

Late shallow water salt on thin crust
indicates depth dependent thinning

South Atlantic Salt Basin between crust and mantle
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South Atlantic
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Need to explain:
— Wide distributed thinning of the crust

— Lack of apparent upper crustal thinning
(undeformed sag, flat basement)

— Shallow lacustrine,marine sediments and salt in
sag basin on highly thinned crust

— Nature of transitional domain



Type Il : Very Weak Lower Crust

- Narrow rifting of mantle lithosphere
. - Distributed extension in crust
= —— - Lower crustal flow to thinning area
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t=18 My, Ax = 180 km
0

- Narrow rifting of mantle lithosphere
- Lower crustal flow to thinning area
= - Regional ‘sag’ subsidence

- Very wide upper crustal sections

- Lower crustal flow to distal margin

- Regional ‘'sag’ subsidence

- Little deformed upper crustal section

Huismans and Beaumont, Nature 2011



Type Il : Very Weak Lower Crust
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E I\ ‘; I
x
5 time

time time

0 = — ‘:7 e
50 :
3
100
oS
N\ 7~
400 500 600 700
x [km]

- Lower crustal flow to distal margin
- Diachronous ‘sag’ subsidence

Huismans and Beaumont, Nature 2011



Mantle Lithospheric Structure and
Composition
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Continental material in the shallow oceanic mantle—

How does it get there?

Cornelia Class Lamont-Doherty Earth Observatory of Columbia University, Palisades, New York 10964, USA
Anton P. le Roex Department of Geological Sciences, University of Cape Town, Rondebosch 7701, South Africa

ABSTRACT

Unusual compositions of some oceanic basalts have been attributed to their sources
containing continental lithosphere detached during the breakup of Gondwana. However,
the processes of how such continental lithospheric material is detached and transported
into the ocean basin have not been constrained. Here we identify Walvis Ridge, where it
has been argued that Deep Sea Drilling Project (DSDP) Site 525A contains continental
material, as a unique location to constrain these processes. Absolute plate motion (relative
to the Tristan mantle plume) and relative plate motion (between Africa and South Amer-
ica) of the African plate are oblique to one another, such that tectonic detachment versus
hotspot-related thermal erosion should sample spatially separated continental units of
different age. We present isotopic compositions of xenoliths representing the neo-
Proterozoic lithosphere at the inferred site for tectonic detachment during continental
breakup and show that this process does not explain the Walvis Ridge DSDP Site 525A
mantle source. Rather, thermal erosion of ancient cratonic mantle by the Tristan mantle
plume is indicated. A convective return flow is required to transport the eroded subcon-
tinental lithospheric mantle to the site of plume activity some ~50 m.y. later and provides
constraints on the direction and velocity of mantle flow in the upper mantle.

Cunha, Inaccessible, and Gough islands form
a tight cluster in isotope space (Fig. 2. open
circles, diamonds, and squares) that overlaps
with Walvis Ridge DSDP Sites 527 and 528
basalt compositions (open triangles). In con-
trast, samples from Walvis Ridge DSDP Site
525A (Fig. 2, black circles in black field) do
not overlap with any other oceanic basalt
compositions from the Tristan plume track. In-
stead, DSDP Site 525A basalts are indistin-
guishable from Urubici-Khumib—type flood
basalts (Fig. 2, black diamonds and triangles
in gray field) (Milner and le Roex, 1996; Peate
et al., 1999), which have a restricted spatial
extent (Fig. 1; region highlighted in gray with-
in the northern Etendeka flood basalt province
shows their occurrence on the African side)
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S-wave tomography

100-175 km

Depth (km)

% Depth Normailized Vs

High velocity — low density depleted lower lithospheric root
extending out under margin and ocean basin

Implications for lack of magmatism and anomalous vertical
motions «Begg et al, Geosphere 2009
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Effect Mobile Lower Lithosphere

Lithospheric Mantle Upper Cratonic Lithosphere
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Cold Non Volcanic Margins
Iberia - Newfoundland

- Magma starved rifting

T

- Exhumation of Mantle Lithosphere
to seafloor

- Final rift stage very narrow with
very narrow crustal necks <100km

38°

- Mantle lithosphere exhumation
. decreases with increasing crustal
=5 neck width

- Progressive deeper levels of ML
in distal positions

c) Southern Transect
E Whale Basin

Huismans and Beaumont, 2004, 2007
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Type | & Il Contrasting Styles

Type I: Strong Crust | )

Moho

Type II-A: Weak Crust Type Il - C

haho Lower Lithosphee breakup -

Huismans and Beaumont, Nature 2011



Non Volcanic Rifted Margins

Favored by stronger crust:
Type | margins:
— Crust breaks first, mantle lithosphere necks later
— Exhume moderate amount (max 50 km) mantle lithosphere

Favored by weak crust
Type II-A margins:
— Mantle lithosphere necks first, crust breaks later

— No mantle lithosphere exhumation, possible non-magmatic
asthenosphere

Type [I-C margins:

— Depleted (cratonic) lower mantle lithosphere flows into necking
area

— Low density owing to depletion promotes shallow water depth

— Depleted nature inhibits magmatism



Model setup: computing melt production
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Simon et al., 2009



Melt weaking & dehydration

strengthening
*Melt feedback changes on viscosity - scaling factors
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Model 1: stable passive upwelling, 45 Myr

Igneous crustal
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