Seismic anisotropy in the vicinity of slabs in the transition zone

Andy Nowacki

School of Earth and Environment, University of Leeds

J-Michael Kendall, James Wookey, Asher Pemberton School of Earth Sciences, University of Bristol

Deep earthquakes: observations, experiments and explanations

RAS discussion meeting London, 10 May 2019 (Friday after UK-SEDI 2019 @ UCL)

Anisotropic TZ?

Anisotropic TZ?

Anisotropy and shear wave splitting

Nowacki et al., J Geod, 2011

Method

Nowacki et al., *G*³, 2015

Method

Nowacki et al., G^3 , 2015

Transition zone near slabs is anisotropic

Nowacki et al., *G*³, 2015

How did it get there?

Faccenda, Tectonophys, 2014

- Ringwoodite
- Majorite
- Ca-perovskite

100

75

50

25

20

vol %

(b)

600

Gar

22

Depth / km

700

Il

2

24

650

Sp

- Metastable olivine
- Bridgmanite in lower mantle
- DHMS: D, shyB
- Akimotoite (ilmenite form)
- Aligned inclusions (melt, other)

Pressure / GPa Kudoh, Phys Chem Min, 2001; Yu et al., JGR, 2011; Mainprice et al., EPSL, 2007; Akoagi et al., PEPI, 2002

- Majorite
- Ca-perovskite

100

75

50

25

20

vol %

600

Gar

22

Depth / km

700

Il

2

24

650

Sp

- Metastable olivine
- •Bridgmanite in lower mantle
- DHMS: D, shyB
- •Akimotoite (ilmenite form)
- •Aligned inclusions (melt, other)

(b) Pressure / GPa Kudoh, Phys Chem Min, 2001; Yu et al., JGR, 2011; Mainprice et al., EPSL, 2007; Akoagi et al., PEPI, 2002

100

75

50

25

20

vol %

600

Gar

22

Depth / km

700

Il

2

24

650

Sp

- Metastable olivine
- •Bridgmanite in lower mantle
- DHMS: D, shyB
- •Akimotoite (ilmenite form)
- •Aligned inclusions (melt, other)

(b) Pressure / GPa Kudoh, Phys Chem Min, 2001; Yu et al., JGR, 2011; Mainprice et al., EPSL, 2007; Akoagi et al., PEPI, 2002

Depth / km

700

Il

2

24

650

Sp

600

Gar

22

100

75

50

25

20

vol %

- Metastable olivine
- •Bridgmanite in lower mantle
- DHMS: D, shyB
- •Akimotoite (ilmenite form)
- •Aligned inclusions (melt, other)

Depth / km

- Metastable olivine
- Bridgmanite in lower mantle
- DHMS: D, shyB
- •Akimotoite (ilmenite form)
- •Aligned inclusions (melt, other)

600 650 700 100 75 Sp vol % 50 25 Gar Il 22 24 20 2 Pressure / GPa (b)

Kudoh, Phys Chem Min, 2001; Yu et al., JGR, 2011; Mainprice et al., EPSL, 2007; Akoagi et al., PEPI, 2002

Kudoh, Phys Chem Min, 2001; Yu et al., JGR, 2011; Mainprice et al., EPSL, 2007; Akoagi et al., PEPI, 2002

Observed splitting in S wave

Fits to data

Fits to data

Layered structure (D, akimotoite or inclusions)

Thermal parameter

Nowacki et al., G^3 , 2015

Thermal parameter

Nowacki et al., G³, 2015; Ben Ismail & Mainprice, Tectonophysics, 1998

Hydrous silicates (alphabet soup)

Nishi et al., Nature Geosci., 2014

The transition zone: what causes the observations

finni

Deep earthquakes: observations, experiments and explanations

RAS discussion meeting London, 10 May 2019

(Friday after UK-SEDI 2019 @ UCL)

Text

 $\Phi = a v \sin \theta$, age *a*, velocity *v*, dip θ

Kirby, et al., Rev Geophys, 1996

Down dip compression

Fast orientations

Du Frane et al., PEPI, 2013

Size problem

A) Aligned faults containing hydrous phases

Alignment of hydrous minerals

Method

Nowacki et al., EPSL, 2012

100° 110° 120° Nowacki et al., G^3 , 2015

Chang et al., 2016; Nowacki et al., 2015

Chang et al., 2016; Nowacki et al., 2015

(faster SH) Chang et al., 2016; Nowacki et al., 2015

Nowacki et al., 2015