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Motivation and our previous work 

GyPSuM Earth model development 

Observations from GyPSuM 

Summary 
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Combining multiple data types yields more robust seismic 
images  
 Reduce non-uniqueness  
 Predict heterogeneity where certain seismic constraints are weak or non-
existent 

 
Need detailed density structure for flow modeling 
 Scaling a model derived with only seismic data is inadequate 
Density heterogeneity should be consistent with geodynamic 
observations 
 Solve for density directly and simultaneously 

 
Evaluate the relative behavior of mantle properties 
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composition 
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Temperature 
±150K 

Temperature 
±150K 

Geodynamics/Tectonophysics Collaborators: 
Alessandro Forte Université du Québec, Robert Moucha Syracuse University, Jerry Mitrovica Harvard, 
David Rowley University of Chicago, Sandrine Quéré Utrecht University 
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 Uplift of the Colorado Plateau Moucha et al. [2008a]  in Geology, Moucha et al. [2009] in GRL 
 Instability of the “stable” Eastern US Moucha et al. [2008b] in EPSL, Rowley et al. [2012, submitted] 
 Global plate decelerations Forte et al. [2009] in GRL 
 Deep-mantle contributions to North American surface dynamics Forte et al. [2010a] in Tectonophysics 
 African topography driven by mantle convection Moucha and Forte [2012] in Nature Geoscience 

 

Mantle flow beneath Africa and surface manifestations 
Forte et al. [2010b] in EPSL 

Possible contribution to New Madrid 
EQs Forte et al. [2007] in GRL 
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S-wave 
Velocity 

P-wave 
Velocity 

S-wave Data 
S, ScS, SKS, SKKS, 

sS, sScS, and 
multiples 

Grand (2002); 
Simmons et al. (2006) 

P-wave Data 
~626,000 teleseismic 

summary rays 
Antolik et al. (2003) 

Geodynamic Observations 
Global free-air gravity (EGM96) 

Tectonic plate motions (NUVEL-1) 
Dynamic Topography (Forte & Perry 2000) 

CMB ellipticity (Mathews et al. 2002) 

Mineral Physics 
Constraints 

 
 
 

Karato & Karki (2001) 
Cammarano et al. (2003) 

3-D Global Model 
S-wave velocity 
P-wave velocity 

Density 

G = Geodynamic 
y 
P = P waves 
S = S waves 
u 
M = Mineral physics 
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Spherical 
harmonic 

component 

Up to 
degree = 16 

Viscous Flow 
Response 

Response of internal 
density loads on the 

observation 

Density-velocity 
conversion 

 

 

Based on mineral physics 

Seismic velocity 

S-wave speed in 
this case  Geodynamic Observations 

 Density anomalies drive flow 
 Fields are dynamically coupled 
 Numerical description in: 

Richards & Hager [1984] 
Ricard et al. [1984] 
Forte & Peltier [1987] 
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 Range defined by mineral physics 
 Expected thermal values 

 Simulated annealing (VFSA) 
 Full joint inversion performed with each update 

0 

500 

1000 

1500 

2000 

2500 

3000 

            Starting Model 
            Tested Profiles 
            VFSA solution 

0 

500 

1000 

1500 

2000 

2500 

3000 
-0.1         0       0.1      0.2      0.3              0.4            0.5            0.6        

D
ep

th
 (k

m
) 

1-D Scaling 
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Starting 1-D scaling profile 

a = Profile 

Amplification 

 

i) Upper mantle 

ii) Lower mantle 

b = Profile 

Shifting 

 

i) Upper mantle 

ii) Lower mantle 
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Starting 1-D scaling profile 

κ = Correction factors for: 
 

Cratonic mass depletion 
& 

Temperature dependence of  Q 
 

*Shear velocity used as a proxy  
for local temperature variations 
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 Range defined by mineral physics 
 Expected thermal values 

 Simulated annealing (VFSA) 
 Full joint inversion performed with each update 
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 Scaling factors allowed to diverge from thermal 
 Non-linear inversion process 
 Allows reconciliation of all seismic/geodynamic data 
 Produces model most closely resembling thermal 
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Joint model of mantle S-wave 
velocity, P-wave velocity and 
density 
 
 Built with the hypothesis that 
temperature variations dominate 

 
The role of composition is minimized 

 
 Detailed, (more) dynamically 
consistent density model of the mantle 

 
 

Vs 

Vp 

Density 

Simmons et al. [2010] 

Surface to CMB 600km to CMB 

Farallon Tethys 

Superplume 
±0.7% 

±0.4% 

±0.2% 

S-wave 
Data 

P-wave 
Data 

Free-air 
Gravity 

Plate 
Div. 

Dynamic  
Topo. 

CMB 
Excess 
Ellip. 

93% 31% 
 

Variance: 
2.6s  

1.8s 

88% 99% 72% 100% 
(0.4 km) 
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*Thermal and Non-thermal components may be constructive or destructive. 
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Core 

S-Wave Anomalies 

P-Wave Anomalies 

Core 
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High Spin Low Spin 
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3-d electrons for 6 fold Fe2+ 

Electronic Spin Transitions: 
Fe2+ undergoes a pressure induced 
transition from a high spin state to a low spin 
state…under mid-mantle P/T conditions 

Affects major mantle minerals 
(Mg,Fe)SiO3 and (Mg,Fe)O: 

Elastic properties 
Density 
Iron partitioning 
Thermal conductivity 
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1271 km 

km/s 

“Farallon” ? 



Lawrence Livermore National Laboratory 20 

Paleo-plate boundaries @ 100 Ma:  Torsvik, Steinberger, Gurnis & Gaina [2010] 

km/s 

Pacific 

1271 km 
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Paleo-plate boundaries @ 200 Ma:  van der Meer et al. [2012] 

Extinct intra-oceanic volcanic arcs formed above ancient subduction zones 
 

*Locations consistent with Paleomagnetism and Biostratigraphy 
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Dense Pile Part I 
 
Properties: 

•Low Shear Speed 
•High Sound Speed 
•High Density 
 

Intrinsically dense, hot 
material. 



Dense Pile Part II 
 
Properties: 

•Low Shear Speed 
•Low Sound Speed 
•High Density 
 

Hotter outer shell.  Hot 
enough to reduce sound 
speed…dense, partial melt?  

Simmons, Forte, Boschi & Grand (2010) 



High Entrainment Zone 
 
Properties: 

•Low Shear Speed 
•High Sound Speed 
•Low Density 
 

Upwelling partly composed of 
intrinsically dense material 
entrained from the dense 
pile. Seen in the SASP, but 
not the WASP. 

Simmons, Forte, Boschi & Grand (2010) 



Deep Negative Zones 
 
Properties: 

•Low Shear Speed 
•Low Sound Speed 
•Low Density 
 

Buoyant  material without 
significant chemical signatures. 
Comprises the remaining low 
shear zones deep beneath 
Africa. 

Simmons, Forte, Boschi & Grand (2010) 



Mid-mantle Negative Zone 
 
Properties: 

•Low Shear Speed 
•Low Sound Speed 
•Low Density 
 

Buoyant  material rising towards 
the EARZ , Cameroon, and Cape 
Verde.  High-density chemical 
signatures seen in extensions 
from the SASP. 

Simmons, Forte, Boschi & Grand (2010) 



Shallow Negative Zone 
 
Properties: 

•Low Shear Speed 
•Low Sound Speed 
•Low Density 
 

Buoyant  material rising towards 
the EARZ , Cameroon, and Cape 
Verde.  Extension toward Hoggar 
with compositional signature.  
Possible SASP fingerprint. 

Simmons, Forte, Boschi & Grand (2010) 
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We have constructed a global-scale joint seismic-geodynamic-
mineral-physics model (GyPSuM) 
 With a “minimum composition” approach 

 Except for cratonic roots and parts of D’’, temperature seems to 
dominate 

We have started with broadly-defined mineral physics 
constraints 
 Future models should incorporate more recent and complete mineral 

physics relationships 

 Trade-offs are problematic 

 

Model available for download on the IRIS website: 
 http://www.iris.edu/dms/products/emc/ 
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Anderson-Grüneisen 
parameter 

anharmonic anelastic 

anharmonic anelastic 

Anderson-Grüneisen 
parameter 
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