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Developmental and Phenotypic Plasticity, Polyphenism

Epigenetics underlying biodiversity within species 

•  Most species can display some degree of 
phenotypic plasticity – either distinctly 
stable  « morphs » - or continuum of traits

•  It can be functional (and potentially 
adaptive), inevitable (neutral or deleterious)

•  It can an be restricted to a few minutes, to a 
whole life time, or to many generations

•  How one genotype can give rise to different 
phenotypes through environmental effects 
is clearly an EPIGENETICS question

•  Back to Waddington’s original definition – 
but actual mechanisms are still elusive
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Biodiversity within individuals and cell populations 

1)  cell-to-cell	variability	in	a	population	of	cells;		
2)		inter-individual	variability	of	multi-cellular	organisms;	
3)  variability	across	populations	and	species.		
4)  Cell-tocells	important	in	shaping	cell	fate	
determination	and	plays	a	key	functional	role	in	cellular	
differentiation.[3,4]	Also,	it	is	thought	to	be	required	for	
population	robustness	and	higher-level	function	of	multi-cellular	
organisms.[5]	For	example,	variability	in	a	population	of	cells	
allows	essentially	binary	decisions,	such	as	undergoing	cell	
death,	to	turn	into	more	flexible	and	fine-tuned	responses	at	the	
level	of	the	cell	population	as	a	whole.	This	creates	an	adaptive	
advantage	and	provides	benefits	in	survival.[6,7]	These	effects	
have	mainly	been	investigated	in	unicellular	organisms,	but	are	
known	to	also	be	relevant	for	human	adaptation	

Ronin	et	al,	Elife	2017	

McClintock,	B.	1954	

Müller,	H.J.	1930s	

A.	Klar;	R.	Allshire	1990’s	

Mutations in epigenetic modifiers can 
impact on the frequency and extent of 
such cellular mosaicism

In fact that is how many epigenetic 
modifiers were originally identified!
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Phenotypic Variation: Stochasticity and Epigenetics

Biodiversity within and between individuals 

Avy 

TE 

×
Avy 

•	Heritable	epigenetic	variants:	
			Transgenerational	epimutations	
				Often	due	to	transposons	
			+/-		Environmentally	sensitive	

•	Stochastic	epigenetic	events:	
			Differences	in	twins,	clones…		
				

Random	XCI	
XXi		XY	

Females	are	mosaics	for	X-linked	traits	

Phenotypic	variation	within	the	
same	individual…	

Mosaicism	varies	between	
individuals	

Xgfp	 Xtomato	Genotype:	

TE-containing alleles of genes 
can become epimutable due to 

epigenetic silencing 
mechanisms

Wu	et	al	(2014)		“Cellular	Resolution	Maps	of	X	Chromosome	Inactivation:	Implication	for	
Neural	Development,	Function,	and	Disease.”	Neuron	81,	103–119	



COPIA

SBP SBP

COPIAcnrCNR (Manning et al, Nat Genet, 2006)

LINE (Karma)

(Ong-Abdullah et al, Nature, 2015)

DEF1 DEF1

LINE (Karma)

Good Karma Bad Karma

MANTLED mantled

As a consequence of these epigenetic 
silencing mechanisms, TE-containing alleles 

of genes can become epimutable

 
Phenotypic Variation: Epigenetics and Stochasticity

Biodiversity within and between individuals 

mantled,	=	épimutation		induite	
par	la	propagation	in	vitro	du	
palmier	à	huile,	à	partir	de	
cellules	méristématiques.		
	
L’épimutation	résulte	de	la	
déméthylation	d’un	element	
transposable	situé	dans	un	
intron	d’un	gène	homéotique	
(DEF1)	impliqué	dans	le	
développement	du	fruit.		
	
L’intron	est	épissé	normalement	
quand	le	TE	est	méthylé,	mais	
beaucoup	moins	quand	il	est	
déméthylé,	ce	qui	conduit	à	des	
transcrits	tronqués,	non-
fonctionnels.	E. Heard, November 2018 
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Reversion: 
Either spontaenous 

Or by reprogramming 
(iPS or Epidrugs) 

Propagation 

Stable Maintenance 

Initiation of alternative states 
(stochastic, programmed, environmental) 

Propagation 

Reversion 
(stochastic, programmed, 

environmental) 

Biodiversity within individuals and cell populations 

Stable Maintenance 

Stochasticity  
« Noise »

&
Propagation

Cellular memory 

Cellular mosaicism: 
Gene expression variability may or may not lead to phenotypic variability

 Phenotypic variability may be beneficial by providing the cell population with a 
greater range of phenotypes, or it can be deletiorous

Mutation



Gustav Klimt 
The three ages of a woman 

(1905) 

it	has	been	proposed	that	the	aging	
clock	is	by	and	large	driven	by	epigenetic	deterioration,	and	that	
understanding	the	root	causes	of	this	deterioration	might	allow	us	to	
stop	or	even	reverse	the	clock	(Rando	and	Chang,	2012).	

CLONES	

Twins	
Vines	
Aspens…	

E. Heard, November 2018 Adapted from Ecker et al, Bioessays 2018

Interindividual variation in epigenetic 
states of some loci is determined, at 
least in part, stochastically and may be 
influenced by the nutritional milieu of 
the preimplantation embryo?

Complex traits such as height, 
shape, and weight emerge from 
the integration of multiple genetic 
and epigenetic determinants. 

They underlie phenotypic 
diversity, as well as susceptibility 
to and severity of virtually all 
disease. Teasing apart the « Genetic » 

(DNA sequence polymorphism) 
from the Epigenetic

(heritable changes in absence of DNA 
sequence change)

 
 Sources of Phenotypic Variation within & between Individuals  



•  Genetic variation in protein-coding regions - buffering/canalisation (eg HSP90)

•  Genetic variation in regulatory sequences leading to differential gene expression

•  Ongoing genetic mutation, either random or directed, during ageing

•  Epigenetic drift during ageing

•  Inherent stochasticity of biochemical processes due to infrequent molecular events 
involving small numbers of molecules – buffering or amplification?

•  Variation in gene expression due to chromatin flucturations (epigenetic states)

•  Variation in gene expression owing to differences in the internal states of a 
population of cells, either from predictable processes such as cell cycle 
progression or from a random process such as partitioning of mitochondria during 
cell division

•  Subtle environmental differences, such as morphogen gradients in multicellular 
development

 
 Sources of Phenotypic Variation within & between Individuals  
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xxx 

By	focusing	on	identical	twins,	the	case	co-twin	design	is	especially	useful	in	epigenetic	studies	as	
one	of	the	main	tasks	in	these	studies	is	to	find	environmental	exposures	that	are	associated	with	the	observed	epigenetic	changes	
linked	to	disease	status.	Here,	the	healthy	co-twins	serve	as	an	ideal	control	group.		
	
MZ	twin	pairs	share	the	same	genetic	composition,	
and	they	may	also	share	a	common	rearing	environment	during	their	
childhood	and	adolescent	years.	As	such,	MZ	pairs	are	perfectly	
matched	on	a	multitude	of	known	(genetics,	age)	and	unknown	
potential	confounding	factors.	This	means	that	the	case	co-twin	
design	is	deemed	to	have	higher	power	than	the	ordinary	casecontrol	
design	used	in	most	of	the	current	epigenome-wide	
association	studies.	

 
Monozygotic Twin Studies: 

Different Phenotype, same Genotype, Differences in Epigenotype? 



Twins	

What	about	not	the	brain	

MEs are epigenetic variants that are set stochastically in the early 
embryo and maintained during subsequent cellular differentiation 
Consequently, MEs function as epigenetic polymorphisms, i.e., stable 
and systemic (not cell type-specific) individual variants.
Epigenetic metastability was discovered due to visible
phenotypic differences among isogenic inbred mice
Interindividual variation in gene expression and phenotype
is correlated with stable individual differences in DNA
methylation at murine ME

 
Monozygotic Twin Studies: 

Different Phenotype, same Genotype, Differences in Epigenotype? 

Powerful but challenging studies owing to large number of potentially confounding efeects
=> Studies in clones or genetically inbred model organisms (plants, worms, mice…)
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 Twin Studies: epigenetic states established during development 

Rather than being predominantly 
determined by genetics, inter-
individual variation in DNA 
methylation at MEs is determined, at 
least in part, stochastically and 
influenced by the nutritional milieu of 
the preimplantation embryo

More in COURS III 
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 Establishment of Environmentally Sensitive DNA methylation 

states in the early Human embryo 

COURS	III	



•  Genetic variation in protein-coding regions - buffering/canalisation

•  Genetic variation leading to differential gene expression

•  Ongoing genetic mutation, either random or directed, during ageing

•  Epigenetic drift during ageing

•  Inherent stochasticity of biochemical processes due to infrequent molecular events 
involving small numbers of molecules

•  Variation in gene expression due to chromatin flucturations (epigenetic states)

•  Variation in gene expression owing to differences in the internal states of a 
population of cells, either from predictable processes such as cell cycle 
progression or from a random process such as partitioning of mitochondria during 
cell division

•  Subtle environmental differences, such as morphogen gradients in multicellular 
development

 
 Sources of Phenotypic Variation within Individuals  
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Importance of Regulatory Element Genetic Variation in 

Biodiversity within and between Individuals 

For different tissue donors, generated 
haplotypes 
Most genes with allelically biased 
expression demonstrate bias in multiple 
samples, approximately 75% exhibit 
statistically significant donor-specific 
bias 
This suggests a connection between 
sequence differences of individuals
and allelically biased gene expression. 

In support of this model, genes
frequently demonstrate consistent 
direction of allelic bias acrossmultiple
tissues of a given donor

		

Besides the aforementioned analyses, several studies have
directly demonstrated the role of regulatory mutations in
generating adaptive traits. One of the most prominent examples
fromvertebrates is the loss of pelvic fins in sticklebacks, which is
driven by the mutation of a pelvic fin-specific regulatory
element of the transcription factor Pitx1 [7, 36]. Other examples
of regulatory elements include differences in limb length in
mammals, triggered by regulatory mutations of Prx1 [37],
differences in axial morphology triggered by mutations in hox
gene enhancers [38, 39], or differences in hair coloration in
humans that are explained by a regulatory mutation of
KITLG [40]. A selection of recent studies analysing the roles
of non-coding DNA in an evolutionary context is highlighted in
Table 1. The studies range from analyses focusing on specific
traits and how their expression is influenced by cis-regulatory
elements [36–46], to studies that compare genome-wide gene
expression and gene regulation between species and might be
the basis for further work on the genomic bases of lineage-
specific adaptive traits [31, 35, 47–49].

Also regulatory RNAs have attracted increasingly more
attention for evolutionary questions. MiRNAs are short

noncoding RNA molecules that bind to complementary
sequences in messenger RNAs (mRNAs), promoting mRNA
translational repression or degradation. Expansions of
miRNAs are suggested to have contributed significantly to
phenotypic evolution in vertebrates by the modification of
post-translational regulation [50]. The haplochromine lineage
of African cichlid fishes shows enrichment for novel miRNAs
suggesting a role in their extreme adaptive radiation [51]. Also
the role of lncRNAs is beginning to be analysed in the context
of evolutionary biology. Despite their modest sequence
conservation, lncRNAs have been annotated in 11 tetrapod
species including 2,500 highly conserved lncRNAs and many
more lineage-specific lncRNAs in primates [48]. The descrip-
tion of lncRNAs is a further step towards understanding their
role in development, disease, as well as vertebrate evolution.

Changes in epigenetic modifications have the
power to change phenotypes – but how
important are they for evolution?

Beside promoters, enhancers, silencers and insulators further
elements control gene regulation that are not directly caused
by changes in the DNA sequence. But, they are mediated
by epigenetic modifications such as DNA modifications (e.g.
DNA methylation) or chromatin modifications (e.g. histone
modifications). Epigenetic changes can be mitotically and
meiotically stable, but are potentially reversible [52]. They are
becoming easier to map and analyse, mainly driven by key
technological advances (RNA-seq and ChIP-seq), and through
the rapid advancement of studies on model organisms. We
anticipate that these techniques will also soon be applicable to

Figure 1. Overview of cis-regulatory elements involved in gene
regulation. Beside mutations in coding regions also mutations in or
deletions of regulatory elements such as enhancers, insulators or
promoter regions can result in changes in gene expression and can
eventually lead to phenotypic diversification. Sequence stretches as
active enhancers, promoters or insulators can be detected by ChIP-
seq using antibodies for proteins (such as CTCF, p300, specific
transcription factors or RNA Polymerase II) or histone modifications
(H3K4me1, H3K4me3, H3K27ac) that are enriched at these
sequences.

....Prospects & Overviews C. F. Kratochwil and A. Meyer

217Bioessays 37: 213–226,! 2014 WILEY Periodicals, Inc.
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•  DNA sequence polymorphism can affect TF binding, chromatin, chromosome folding
•  Can epigenetic polymorphism occur without DNA-sequence variation?
•   XCI, imprinting, but  how much variation occurs across tissues
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Importance of Regulatory Element Genetic Variation in 

Individual-specific Diversity 
Gene Regulation 

For different tissue donors, generated 
haplotypes 
Most genes with allelically biased 
expression demonstrate bias in multiple 
samples, approximately 75% exhibit 
statistically significant donor-specific 
bias 
This suggests a connection between 
sequence differences of individuals
and allelically biased gene expression. 

In support of this model, genes
frequently demonstrate consistent 
direction of allelic bias acrossmultiple
tissues of a given donor

•  Large collection of haplotype-resolved transcriptomes across 
an array of tissues from multiple individuals

•  Comprehensive survey of allelic chromatin state and gene 
expression across different tissues and donors

•  Extensive allelically biased gene expression connected to 
change in chromatin states at cis-regulatory elements

analysis of gene expression (CAGE) signal21, typical of active promoters
(Extended Data Fig. 6a, b), and found that they possess heart-restricted
enhancer activities in an in vivozebrafish reporter assay (ExtendedData
Fig. 6c). Consistent with reporter activities, transcriptional properties
(RNA-seq values based on reads per kilobase permillionmapped reads
(RPKM) within61 kb of the elements) of cREDS enhancers and pro-
moters are similar tonon-cREDSenhancers andpromoters, respectively
(Fig. 1d). Interestingly, when comparing isoform dynamics across H1
and IMR-90 RNA-seq data sets22 with cREDS identified between these
two cell types we discovered that a subset of cREDS promoters was
accompanied by creation of new transcripts and/or alternative exon
usage (n5 99) (Fig. 1e), revealing a possible function whereby cREDS
influence cell/tissue-specific transcript variants. Taken together, these
data show that cREDS can potentially function as both promoters and
enhancers in distinct cell types and fine-tune transcriptomes.
Reasoning that global analysis of allelic histonemodificationandgene

expression patterns would elucidate mechanisms of long-range gene
regulation by distal cis-regulatory elements, we re-analysed RNA-seq
andChIP-seq data sets by considering haplotype information. For this
purpose, we applied HaploSeq1, which integrated genome sequencing
with high-throughput chromatin conformation capture (Hi-C) data
sets to derive chromosome-spanning haplotypes (see Supplementary
Information). For four different tissuedonors,we generatedhaplotypes
spanning entire chromosomeswith 99.5% completeness on average (the
coverageof haplotype-resolved genomic regions) and average resolution
(the coverage of phased heterozygous SNPs) ranging from 78% to 89%
(Fig. 2a and SupplementaryTables 4 and 5). The accuracy of haplotype
predictionswas validatedby the concordancewith SNPs residing in the
same paired-end sequencing reads. The concordance rates were 99.7%
and 98.4% for H3K27ac ChIP-seq reads (described below) and RNA-
seq reads, respectively, indicating high accuracy. We then re-analysed
36mRNA-seqdata sets from18 tissues (including16 tissuesnotedabove
with the addition of bladder and adipose tissue) and 187ChIP-seq data

sets for 6 histonemodifications (Supplementary Table 6), from up to 4
individual donors, in a haplotype-resolved context.
Althoughwidespread allelic imbalances in gene expressionhad been

previously noted7,23–25, it remains unclear whether this phenomenon is
consistent across distinct tissues and individuals, and the underlying
mechanism remains undefined. To address the first point, we defined
geneswith allelically biased expression bymeans ofmapping theRNA-
seq reads in each tissue sample in a haplotype-resolved manner. We
observed extensive allelically biased gene expression, ranging from 4%
to 13% of all informative genes (.10 allelic read counts) in each tissue
sample (falsediscovery rate (FDR)5 5%,ExtendedDataFig. 7a, b).Com-
paratively, the proportion of allelically biased genes in individual tissue
donors ranged from 6% to 23% of all informative genes, giving a com-
bined total of 2,570 allelically biased genes (Fig. 2b and Supplementary
Table 7). As a control, known imprinted genes (n5 15) showed com-
mon allelic biases across multiple samples (Fig. 2c) and donors (Ex-
tended Data Fig. 7c). Our data sets, representing the only collection of
haplotype-resolved transcriptomes across an array of tissues frommul-
tiple individuals, allowed us to characterize allelic transcription across
tissues and donors.Whilemost genes with allelically biased expression
demonstrate bias inmultiple samples, approximately 75%exhibit stati-
stically significantdonor-specific bias (Fig. 2d andExtendedDataFig. 7d).
This suggests a connectionbetween sequence differences of individuals
and allelically biased gene expression. In support of this model, genes
frequentlydemonstrate consistent directionof allelic bias acrossmultiple
tissues of a givendonor (Fig. 2e andExtendedDataFig. 7e). Interestingly,
allelically biased geneswere not restricted to the same tissue type across
distinct donors. Rather, theyweremostly specific to individual samples
derived from each donor (Fig. 2f and Extended Data Fig. 7f), possibly
resulting from differential levels of tissue-restricted transcription fac-
tors among different tissue samples.
As natural genetic variations can affect enhancer selection and func-

tion in mammalian cells26, we hypothesized that polymorphisms at
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Figure 1 | Epigenome profiles of tissues reveal cREDSwith dynamic histone
modification signatures. a, Schematic of the cell/tissue types profiled and their
progression along developmental lineages. Samples include embryonic stem
cells (H1), early embryonic lineages (mesendoderm cells (MES), neural
progenitor cells (NPC), trophoblast-like cells (TRO) and mesenchymal stem
cells (MSC)) and somatic primary tissues, representative of all three germ layers
(ectoderm: hippocampus (HIP), anterior caudate (AC), cingulate gyrus (CG),
inferior temporal lobe (ITL) and mid-frontal lobe (MFL); endoderm: lung
(LG), small bowel (SB), thymus (TH), sigmoid colon (SG), pancreas (PA), liver
(LIV) and IMR-90 fibroblasts; mesoderm: duodenum smooth muscle (DUO),
spleen (SX), psoas (PO), gastric tissue (GA), right heart ventricle (RV), right
heart atrium (RA), left heart ventricle (LV), aorta (AO), ovary (OV) and

adrenal gland (AD)). b, Heat maps show H3K27ac, H3K4me3 and H3K4me1
enrichment (input normalized reads per kilobase per million mapped reads
(RPKM)) at predicted lung enhancers (n5 1,321), which are defined as
promoters in other tissues, across all 28 samples. The red box highlights the
signatures in lung. c, A UCSC genome browser snapshot of a region on
chromosome 20, showing the chromatin states of a cREDS element (grey
shading) predicted as a promoter in psoas and an enhancer in lung. d, A box-
plot of RNA-seq signals (RPKM) overlapping61 kb of cREDS enhancers,
cREDS promoters, non-cREDS control enhancers and non-cREDS control
promoters.***P, 103 102142,Wilcoxon test. e, RNA-seq and chromatin states
of a cREDS element (grey shading) is shown for a region on chromosome 17 in
H1 and IMR-90. Arrow indicates an alternative exon incorporated in IMR-90.
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analysis of gene expression (CAGE) signal21, typical of active promoters
(Extended Data Fig. 6a, b), and found that they possess heart-restricted
enhancer activities in an in vivozebrafish reporter assay (ExtendedData
Fig. 6c). Consistent with reporter activities, transcriptional properties
(RNA-seq values based on reads per kilobase permillionmapped reads
(RPKM) within61 kb of the elements) of cREDS enhancers and pro-
moters are similar tonon-cREDSenhancers andpromoters, respectively
(Fig. 1d). Interestingly, when comparing isoform dynamics across H1
and IMR-90 RNA-seq data sets22 with cREDS identified between these
two cell types we discovered that a subset of cREDS promoters was
accompanied by creation of new transcripts and/or alternative exon
usage (n5 99) (Fig. 1e), revealing a possible function whereby cREDS
influence cell/tissue-specific transcript variants. Taken together, these
data show that cREDS can potentially function as both promoters and
enhancers in distinct cell types and fine-tune transcriptomes.
Reasoning that global analysis of allelic histonemodificationandgene

expression patterns would elucidate mechanisms of long-range gene
regulation by distal cis-regulatory elements, we re-analysed RNA-seq
andChIP-seq data sets by considering haplotype information. For this
purpose, we applied HaploSeq1, which integrated genome sequencing
with high-throughput chromatin conformation capture (Hi-C) data
sets to derive chromosome-spanning haplotypes (see Supplementary
Information). For four different tissuedonors,we generatedhaplotypes
spanning entire chromosomeswith 99.5% completeness on average (the
coverageof haplotype-resolved genomic regions) and average resolution
(the coverage of phased heterozygous SNPs) ranging from 78% to 89%
(Fig. 2a and SupplementaryTables 4 and 5). The accuracy of haplotype
predictionswas validatedby the concordancewith SNPs residing in the
same paired-end sequencing reads. The concordance rates were 99.7%
and 98.4% for H3K27ac ChIP-seq reads (described below) and RNA-
seq reads, respectively, indicating high accuracy. We then re-analysed
36mRNA-seqdata sets from18 tissues (including16 tissuesnotedabove
with the addition of bladder and adipose tissue) and 187ChIP-seq data

sets for 6 histonemodifications (Supplementary Table 6), from up to 4
individual donors, in a haplotype-resolved context.
Althoughwidespread allelic imbalances in gene expressionhad been

previously noted7,23–25, it remains unclear whether this phenomenon is
consistent across distinct tissues and individuals, and the underlying
mechanism remains undefined. To address the first point, we defined
geneswith allelically biased expression bymeans ofmapping theRNA-
seq reads in each tissue sample in a haplotype-resolved manner. We
observed extensive allelically biased gene expression, ranging from 4%
to 13% of all informative genes (.10 allelic read counts) in each tissue
sample (falsediscovery rate (FDR)5 5%,ExtendedDataFig. 7a, b).Com-
paratively, the proportion of allelically biased genes in individual tissue
donors ranged from 6% to 23% of all informative genes, giving a com-
bined total of 2,570 allelically biased genes (Fig. 2b and Supplementary
Table 7). As a control, known imprinted genes (n5 15) showed com-
mon allelic biases across multiple samples (Fig. 2c) and donors (Ex-
tended Data Fig. 7c). Our data sets, representing the only collection of
haplotype-resolved transcriptomes across an array of tissues frommul-
tiple individuals, allowed us to characterize allelic transcription across
tissues and donors.Whilemost genes with allelically biased expression
demonstrate bias inmultiple samples, approximately 75%exhibit stati-
stically significantdonor-specific bias (Fig. 2d andExtendedDataFig. 7d).
This suggests a connectionbetween sequence differences of individuals
and allelically biased gene expression. In support of this model, genes
frequentlydemonstrate consistent directionof allelic bias acrossmultiple
tissues of a givendonor (Fig. 2e andExtendedDataFig. 7e). Interestingly,
allelically biased geneswere not restricted to the same tissue type across
distinct donors. Rather, theyweremostly specific to individual samples
derived from each donor (Fig. 2f and Extended Data Fig. 7f), possibly
resulting from differential levels of tissue-restricted transcription fac-
tors among different tissue samples.
As natural genetic variations can affect enhancer selection and func-

tion in mammalian cells26, we hypothesized that polymorphisms at
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Figure 1 | Epigenome profiles of tissues reveal cREDSwith dynamic histone
modification signatures. a, Schematic of the cell/tissue types profiled and their
progression along developmental lineages. Samples include embryonic stem
cells (H1), early embryonic lineages (mesendoderm cells (MES), neural
progenitor cells (NPC), trophoblast-like cells (TRO) and mesenchymal stem
cells (MSC)) and somatic primary tissues, representative of all three germ layers
(ectoderm: hippocampus (HIP), anterior caudate (AC), cingulate gyrus (CG),
inferior temporal lobe (ITL) and mid-frontal lobe (MFL); endoderm: lung
(LG), small bowel (SB), thymus (TH), sigmoid colon (SG), pancreas (PA), liver
(LIV) and IMR-90 fibroblasts; mesoderm: duodenum smooth muscle (DUO),
spleen (SX), psoas (PO), gastric tissue (GA), right heart ventricle (RV), right
heart atrium (RA), left heart ventricle (LV), aorta (AO), ovary (OV) and

adrenal gland (AD)). b, Heat maps show H3K27ac, H3K4me3 and H3K4me1
enrichment (input normalized reads per kilobase per million mapped reads
(RPKM)) at predicted lung enhancers (n5 1,321), which are defined as
promoters in other tissues, across all 28 samples. The red box highlights the
signatures in lung. c, A UCSC genome browser snapshot of a region on
chromosome 20, showing the chromatin states of a cREDS element (grey
shading) predicted as a promoter in psoas and an enhancer in lung. d, A box-
plot of RNA-seq signals (RPKM) overlapping61 kb of cREDS enhancers,
cREDS promoters, non-cREDS control enhancers and non-cREDS control
promoters.***P, 103 102142,Wilcoxon test. e, RNA-seq and chromatin states
of a cREDS element (grey shading) is shown for a region on chromosome 17 in
H1 and IMR-90. Arrow indicates an alternative exon incorporated in IMR-90.
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Importance of Regulatory Element Genetic Variation in 

Individual-specific Diversity 
Gene Regulation 

For different tissue donors, generated 
haplotypes 
Most genes with allelically biased 
expression demonstrate bias in multiple 
samples, approximately 75% exhibit 
statistically significant donor-specific 
bias 
This suggests a connection between 
sequence differences of individuals
and allelically biased gene expression. 

In support of this model, genes
frequently demonstrate consistent 
direction of allelic bias acrossmultiple
tissues of a given donor

•  Large collection of haplotype-resolved transcriptomes across 
an array of tissues from multiple individuals

•  Comprehensive survey of allelic chromatin state and gene 
expression across different tissues and donors

•  Extensive allelically biased gene expression connected to 
change in chromatin states at cis-regulatory elements

•  Due to single nucleotide polymorphisms (SNPs) that 
potentially disrupt /weaken transcription factor motifs

•  Discovered 133 transcription factor motifs showing 
significant concordance between allelic reduction of enhancer 
activities and transcription factor motif disruption

•  Genes with allelically biased expression were concordant with 
enhancer motif disruptions at close proximity (<20 kb) or 
displaying strong Hi-C interactions at  >20 kb.

•  Genetic variations are probably responsible for allelic 
enhancer activities and consequently allelically biased 
gene expression.



•  Genetic variation in protein-coding regions - buffering/canalisation

•  Genetic variation leading to differential gene expression

•  Ongoing genetic mutation, either random or directed, during ageing

•  Epigenetic drift during ageing

•  Inherent stochasticity of biochemical processes due to infrequent molecular events 
involving small numbers of molecules

•  Variation in gene expression due to chromatin flucturations (epigenetic states)

•  Variation in gene expression owing to differences in the internal states of a 
population of cells, either from predictable processes such as cell cycle 
progression or from a random process such as partitioning of mitochondria during 
cell division

•  Subtle environmental differences, such as morphogen gradients in multicellular 
development

 
 Sources of Phenotypic Variation within Individuals  



Ongoing Genetic and Epigenetic Variation in Somatic Cells 

E. Heard, November 2018 

Submegabase copy number variations arise during
cerebral cortical neurogenesis as revealed by
single-cell whole-genome sequencing
Suzanne Rohrbacka,b,1, Craig Aprilc, Fiona Kaperc, Richard R. Riveraa, Christine S. Liua,b, Benjamin Siddowaya,
and Jerold Chuna,2
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Somatic copy number variations (CNVs) exist in the brain, but their
genesis, prevalence, forms, and biological impact remain unclear,
even within experimentally tractable animal models. We combined a
transposase-based amplification (TbA) methodology for single-cell
whole-genome sequencingwith a bioinformatic approach for filtering
unreliable CNVs (FUnC), developed from machine learning trained on
lymphocyte V(D)J recombination. TbA–FUnC offered superior geno-
mic coverage and removed >90% of false-positive CNV calls,
allowing extensive examination of submegabase CNVs from over
500 cells throughout the neurogenic period of cerebral cortical devel-
opment in Mus musculus. Thousands of previously undocumented
CNVs were identified. Half were less than 1Mb in size, with deletions
4× more common than amplification events, and were randomly dis-
tributed throughout the genome. However, CNV prevalence during
embryonic cortical development was nonrandom, peaking at mid-
neurogenesis with levels triple those found at younger ages before
falling to intermediate quantities. These data identify pervasive small
and large CNVs as early contributors to neural genomic mosaicism,
producing genomically diverse cellular building blocks that form the
highly organized, mature brain.

single-cell sequencing | CNV | genomic mosaicism | brain development |
machine learning

Cellular diversity in the brain has long been recognized; how-
ever, its basis is incompletely understood. A variable that may

contribute to diversity is genomic mosaicism (GM): intraindividual
cell-to-cell DNA variability (1, 2). Neural GM was first identified as
aneuploidies, the largest form of copy number variations (CNVs),
with smaller CNVs, retrotransposition events, and single-nucleotide
variations (SNVs) reported subsequently (3–7). GM was initially
characterized by chromosomal approaches like spectral karyotyping
as well as fluorescent in situ hybridization (1, 2, 6–8) and flow
cytometry that reported DNA content variation (9). More recently,
advances in single-cell whole-genome sequencing (scWGS) have
offered DNA sequence information across the genome within single
cells (10, 11), making feasible the investigation of CNVs.
Indeed, several recent studies have reported somatic CNVs in

adult human cerebral cortical neurons (12–14). However, these
studies reported variable findings—a range of 0.2–3.4 CNVs per cell
affecting between 9 and 68% of neurons—and no CNVs below
2 Mb (12–14). These discrepancies could be due to multiple factors,
including different sample types and preparations, nonstandardized
informatics, and an absence of somatically generated CNV positive
controls. Furthermore, limitations of using human brain have pre-
cluded a rigorous assessment of developmental variation in CNVs.
Use of Mus musculus as a model system could provide de-
velopmental insights into the generation of neural CNVs. However,
mouse brain analyses by scWGS have been limited to a single study
of 159 cells of unclear developmental age and neuroanatomical
origin (15).
When do neural CNVs arise? What sizes and forms do they

take? Does their production vary developmentally? To answer

these basic questions of mosaic CNV generation, we combined
DNA amplification [transposase-based amplification (TbA)] and
data analysis [filtering unreliable CNVs (FUnC)] methods that
enabled examination of hundreds of single cells from the fetal
mouse cerebral cortex throughout neurogenesis [from embryonic day
11.5 (E11.5) to E19.5] (16), a period that is known to be associated
with GM through neural progenitor cell (NPC) aneuploidies (6, 7,
17). Generation and analysis of ∼500 single-cell datasets from NPCs,
adult cortical neurons, and splenocyte controls (Table 1) identified
thousands of CNVs at or below 1 Mb. CNVs were distributed
throughout the genome, yet showed quantitative variation during key
stages of development.

Results
To obtain a rigorous assessment of CNV presence in the developing
cerebral cortex, samples were obtained from 43 animals, primarily
fetal cortices from timed-pregnant mice throughout the period of

Significance

Reports of copy number variations (CNVs) within single human
brain cells have been limited to megabase-scale alterations in
relatively few cells, leaving unclear when CNVs first arise and
whether their generation is regulated. Answering these questions
has been limited by an absence of experimentation with model
organisms that allow developmental assessments infeasible with
human samples. Here, we identify the existence and develop-
mental dynamics of cerebral cortical CNVs in mouse, showing
that their prevalence increases through midneurogenesis. Our
improved sequencing approach also allowed characterization
of previously undocumented neural CNVs below 1 Mb in size,
comprising half of all alterations. These data demonstrate the
existence of myriad CNVs, which genomically diversify neural cells
before incorporation into the mature organization of the brain.
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cerebral cortical neurogenesis, along with samples of cortical neu-
rons and splenocytes from adults for control comparison (Fig. 1A).
The DNA from a total of 658 single cells was amplified, from which
488 cells passed dataset quality controls (QCs) for further interro-
gations (Table 1). To obtain sufficient DNA from a single cell for
sequencing, we utilized TbA, which integrates whole-genome
amplification and sequencing library preparation, analogous
to optimizing the Nextera library preparation approach for
scWGS applications (Fig. 1B). To assess the appropriateness of
this method for accurate identification of CNVs, we compared
samples collected from the same biological preparation but
amplified by TbA vs. GenomePlex (Sigma), as the latter kit has
been the most widely applied amplification methodology for
CNV analysis in neural tissue (12–15). TbA generated datasets
with consistently lower noise (Fig. 2A), which appears to be due
to increased library complexity as indicated by higher genomic

coverage per read (Fig. 2B). This allowed more and smaller
CNVs to be identified when using TbA (Fig. 2 C and D).
While developing our data analysis pipeline, we discovered

that cells with highly altered genomes were erroneously subject
to being discarded by several widely applied QC noise metrics
(12–15). Specifically, male samples exhibited consistently higher
values for two noise measurements, median absolute difference
(MAD) and variability score (VS) (SI Appendix, Fig. S1A). This
was caused by a systematically higher variability in normalized
read depth across the monosomic X chromosome (SI Appendix,
Fig. S1B). This increased noise appeared to be a technical arti-
fact of hypoploidy: when data from two separately amplified,
monosomic X chromosomes were combined, there was a reduction
in read depth fluctuations to that of a disomic, female X chromo-
some (SI Appendix, Fig. S1C). This phenomenon was confirmed by
analyzing independently generated aneuploid datasets (SRP041670;
NCBI SRA) (15); cells containing at least one hypoploidy had
significantly higher MAD and VS scores (SI Appendix, Fig. S1D).
These results suggest that independent amplification of homologous
chromosomes creates an averaging effect that produces a reduced
error profile for disomic chromosomes. Since the median absolute
pairwise difference (MAPD) noise statistic was the least impacted
by hypoploidy across all assessments, it was selected for noise
quantification in subsequent analyses (18).
Use of appropriate controls is critical in scWGS because the

methodology destroys the original template, precluding direct rep-
lication of findings. Prior scWGS studies have used cells with
constitutively present CNVs or aneuploidies to assess technical
sensitivity (12–15, 19–21); however, constitutive CNVs are not so-
matically produced and may create analytical bias for the detection
of a singular form of identical size and genomic location. We
therefore established a positive control for stochastically generated
CNVs by using splenic immune cells, which include B and T lym-
phocytes that have undergone somatic DNA recombination by
means of V(D)J recombination and (for B cells) heavy chain class
switching. Blinded assessments of these cells identified deletions
(≤2.5 Mb) mapping to the known V(D)J recombination loci for B
and T cells (Fig. 3), including the expected size range and chro-
mosomal location. A total of 68 distinct recombination events were
identified in 51 TbA-amplified splenocytes, forming the largest
stochastically generated positive control dataset involving normal
(not genetically diseased) cells to calibrate identification of somatic,
neural CNVs. These controls were used both to determine appropriate

Table 1. Samples prepared and analyzed for somatic CNVs

Group Animals*Method
Samples amplified/

analyzed No. of CNVs

E11.5 5 TbA 44/38 232
E12.5 4 GP 39/28 227

TbA 38/28 314
E13.5 14 GP 35/29 120

TbA 74/56 1093
E14.5 8 GP 37/26 134

TbA 74/56 1093
E16.5 5 TbA 46/39 540
E19.5 4 TbA 47/32 302
Adult neurons 1 TbA 59/55 524
Splenic cells 2 GP 28/9 25

TbA 129/188 837
Totals 43 GP 139/92 506

TbA 519/396 4888
All 658/488 5394

Samples analyzed/amplified indicates both to the total number of data-
sets produced and the number passing QC requirements (Reads > 600,000;
MAPD < 0.40; confidence score > 0.80). GP, GenomePlex (Sigma).
*Multiple brains from one litter were pooled for embryonic samples.
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Lymphocyte
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Fig. 1. Overview of study design and methods. (A) An extensive range of murine tissue samples was collected for analysis, including NPCs at six embryonic
ages, adult cortical neurons, and adult splenocytes. (B) The TbA method to amplify genomic DNA was performed on single nuclei isolated by FANS, which
involves tagmentation—enzymatic DNA fragmentation via insertion of universal sequencing adapters—followed by PCR with unique sample indexes. (C)
Bioinformatic processing of data begins with calculating sequencing depth in ∼0.1-Mb genomic regions, followed by CNV calling with the CBS algorithm, and
finished with application of FUnC, which removes CNV calls that do not conform sufficiently to an integer copy number state.
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the average adult neuron rate, and triple that observed at E11.5
(Fig. 6B). Over 93% of samples contained one or more CNVs,
and elevated rates corresponded with an increase in the pro-
portion of cells containing high, rather than moderate, numbers
of CNVs (Fig. 6C). While both amplifications and deletions in-
creased with CNV frequency, deletions predominated (Fig. 6D)
and produced a cumulative DNA loss from E12.5 to E14.5 (Fig.
6E). Multiple biological preparations of E13.5, E14.5, and lym-
phocyte samples confirmed the differences among age groups (SI
Appendix, Fig. S6).

Discussion
The use of both the TbA whole-genome amplification technique
and unbiased modeling of true positive CNVs (to create FUnC)
expanded the range of detectable neural GM, particularly
allowing the identification of submegbase (sub-Mb) CNVs that
were invisible to previous approaches and revealing many more
CNV-positive neural cells than previously recognized. It is vir-
tually certain that even more CNVs exist below 0.25 Mb, espe-
cially considering the nonidentical alterations (e.g., SNVs)
observed by higher depth sequencing after massive amplification
or clonal expansion (4, 25).
Within the field of single-cell genomics, there has been a trend

toward collecting ultra-low-coverage data to screen very large
numbers of cells for CNVs (20, 26). This approach is advanta-
geous when CNVs are prevalent, large, and clonal. That does not
describe the characteristics that we have observed in cortical sam-
ples, where nearly half of all CNVs were small; medium-resolution,
low-noise data were essential to identify such alterations. CNVs
have been considered by some as unimportant for neuroscience
(13, 15, 20) based upon studies limited to multimegabase-sized
CNVs. However, our findings support a marked prevalence of
sub-Mb alterations, suggesting their potential to alter neural
phenotypes. Indeed, proof-of-concept for physiological roles of
small, somatically arising mosaic CNVs was reported in sporadic
Alzheimer’s disease neurons through CNV gains in the patho-
genic gene, amyloid precursor protein (APP) (3), presaging roles
for this and other small CNVs in brain development, function,
and disease.
The observed developmental differences in CNV prevalence have

parallels to DNA double-strand break generation, programmed
cell death, and aneuploidy. Nonhomologous end joining (NHEJ)
proteins are essential for viable cortical neurogenesis at similar

developmental stages as the peak in CNV prevalence and can
play a role in CNV generation (5, 8, 27, 28). Further research to
elucidate the potential mechanistic involvement of NHEJ path-
ways in cortical CNV presence could provide insights into the
importance of these somatic alterations.
Programmed cell death is elevated around E14 in the cortex

(17, 29), and while the CNVs reported here are much larger than
DNA fragments associated with apoptosis (29), some cells with a
high CNV burden probably die (17, 30). Cell death might in part
explain the developmental reduction in CNVs reported here. In
further support of this relationship, very large CNVs that are
aneuploidies (2) are altered in form and number by inhibiting
apoptosis via caspase genetic deletion or pharmacological in-
hibition (30). Notably, the peaks of programmed cell death (17,
29) and CNV prevalence coincide, implicating a relationship
between these two phenomena in the embryonic cerebral cortex.
The genome-wide location of CNVs throughout neurogenesis
does not point to a specific locus promoting cell death, being
more consistent with the concept of a quantitative threshold of
CNV production beyond which cell death occurs.
Aneuploidy, as detected in metaphase spreads, is not only altered

by cell death, but also prevalent in the embryonic cortex (∼30% of
NPC metaphase spreads) and preferentially involves DNA loss (1,
6, 7). The relationship between aneuploidy in metaphase spreads
versus interphase scWGS is unknown; however, similarities between
rates of metaphase spread aneuploidies and CNVs reported here
along with the mutual preference for DNA loss, support an asso-
ciation between previously reported aneuploidies and the CNVs
identified in this study. To match the reported metaphase aneu-
ploidy rates (7, 30), nonmitotic chromosomes with ≥2% of their
length affected by CNVs would need to be considered aneuploid.
The relationship between the historical gold standard of metaphase
spread aneuploidy and nonmitotic, TbA-identified fragmented an-
euploidy is not known. However, it is conceivable that fragmented
aneuploidies formed by many small CNVs as noted here could
manifest as metaphase aneuploidy upon chromosome condensa-
tion. Indeed, this possibility is supported by reported chromosomal
aberrations affecting ∼65% of neuronal nuclei following somatic
cell nuclear transfer to allow chromosomal condensation (31), im-
plicating a linkage between fragmented aneuploidies in nonmitotic
neural cells, as this approach provides a snapshot of how an in-
terphase NPC could appear if instantaneously condensed to a
metaphase spread.
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Fig. 6. CNVs are generated and developmentally
varied during cortical neurogenesis. (A) The fre-
quency with which each genomic locus is affected by
an amplification (above the gray line) or deletion
(below the gray line) event. The Ig heavy chain and
TCR α chain are indicated by open and closed ar-
rowheads, respectively. (B) The number of CNVs per
cell increases through E14.5. (C) The proportion of
cells containing 0, moderate (≤5), or extreme CNV
numbers. (D) Amplification and deletion events per
cell showing a preference for DNA loss. (E) Heatmap
of net DNA change per cell. The dashed line indicates
0, an equal quantity of DNA amplified and deleted.
All error bars show SEM; sample sizes are listed in
Table 1; *P < 0.05 vs. E13.5; †P < 0.01 vs. E14.5; ‡P < 0.01
vs. E11.5; §P < 0.01 vs. Lym; {P < 0.001 vs. deletions.
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•  Identify pervasive small and large Copy 
Number Variant as early contributors to 
neural genomic mosaicism, producing 
genomically diverse cellular building blocks 
that form the highly organized, mature brain.

•  Thousands of CNVs identified

•  Half are less than 1 Mb in size; deletions 4× 
more common than amplification events

•  Randomly distributed throughout the genome. 
•  CNV prevalence during embryonic cortical 

development is nonrandom, peaking at mid- 
neurogenesis with levels triple those found at 
younger ages before falling to intermediate 
quantities. 

Bushman	DM,	Chun	J	(2013)	The	genomically	
mosaic	brain:	Aneuploidy	and	more	in	neural	
diversity	and	disease.	Semin	Cell	Dev	Biol	24:357–
369.	
Rohrback	S,	Siddoway	B,	Liu	CS,	Chun	J	(2018)	
Genomic	mosaicism	in	the	developing	and	adult	
brain.	Dev	Neurobiol,	10.1002/dneu.22626.	



Ongoing Genetic and Epigenetic Variation in Somatic Cells 

Erwin et al, Nature Reviews Neuroscience, 2014

Muotri, A. R. et al. Somatic mosaicism in neuronal precursor cells mediated by L1 retrotransposition. Nature 435, 903–910 (2005). 
Baillie, J. K. et al. Somatic retrotransposition alters the genetic landscape of the human brain. Nature 479, 534–537 (2011) 
Evrony et al. Single-neuron sequencing analysis of L1 retrotransposition and somatic mutation in the human brain. Cell 151, 483–496 (2012)
Perrat, P. N. et al. Transposition-driven genomic heterogeneity in the Drosophila brain. Science 340, 91–95 (2013)

 Mobile DNA elements in the generation of diversity and 
complexity in the brain and other tissues 

(COURS 2017)

•  TE activation can lead to mobility and TE expression can influence nearby genes
•  Mobilization of LINE1 elements in the brain (mammals and flies) generates 

neuronal somatic mosaicism – though more frequent than expected (~0.2 events/
neuron), this is nevertheless rare and usually of no impact?

Contribution of TEs to genetic variation within individuals
Mobility or expression can contribute to phenotypic variation and disease 
High rates of TE activity in some somatic tissues – such as brain – can  
increase cellular mosaicism (genetic and potentially phenotypic)?

E. Heard, November 2018 



Ageing and Epigenetic changes 
  

Pal and Tyler, 2016

Just how similar are two supposedly genetically identical individuals as they age…

E. Heard, November 2018 



How do Epigenetic Changes Arise during Ageing? 
 
  

•  Indeed, in an adult stem
cell model of ex vivo aging, entry into 
senescence was accompanied by
increased transcription from the SINE/Alu 
retrotransposable elements
and persistent DNA damage foci (70). 
Experimental suppression of the
transcripts from Alu elements reversed the 
arrested phenotype and
eradicated the DNA damage foci, directly 
indicating that retrotransposon
transcription was driving the entry into 
senescence (Fig. 2). Given
the many recent links between activation of 
retrotransposable elements
and aging, it is interesting to note that 
transposition also becomes more
frequent during cancer development (74, 75), 
wherein aging is the highest
risk factor for most cancers. 
Neurodegeneration, another disease of
aging, is also characterized by increased 
retrotransposition (76, 77

Benayoun et al, 2015

E. Heard, November 2018 
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Oxidative Stress: induces formation and 
relocalization of epigenetic machinery to other 
parts of genome 

Gut and Verdin, Nature 2013

•  Cellular concentrations of metabolites can 
fluctuate as a function of a cell’s metabolic state

•   The activity of chromatin regulators may 
change as a function of metabolic status and so 
transduce a homeostatic transcriptional response

Metabolic Stress Replication stress:  loss of chromatin memory	

COURS 2015
COURS III



•  Genetic variation in protein-coding regions - buffering/canalisation

•  Genetic variation leading to differential gene expression

•  Ongoing genetic mutation, either random or directed, during ageing

•  Epigenetic drift during ageing

•  Inherent stochasticity of biochemical processes due to infrequent molecular events 
involving small numbers of molecules

•  Variation in gene expression due to chromatin flucturations (epigenetic states)

•  Variation in gene expression owing to differences in the internal states of a 
population of cells, either from predictable processes such as cell cycle 
progression or from a random process such as partitioning of mitochondria during 
cell division

•  Subtle environmental differences, such as morphogen gradients in multicellular 
development

 
 Sources of Phenotypic Variation within Individuals  
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Cell to cell variation within Individuals: Starting with Noise? 

•  To observe cell to cell variation need to use single cell techniques
•  Cell individuality first observed in bacteria in 1976 (Spudich and Koshland, 1976)
•  Noisy systems can generate cell-to-cell variability (unique behaviour) in 

genetically identical cells 
•  Can either be buffered (canalisation): some gene networks have evolved to 

minimize the effects of noise
•  Or can provide cellular plasticity  that can be stably propagated or can be reversed
•  Population robustness: variability in a population of cells allows essentially binary 

decisions, such as cell death, to turn into more flexible and fine-tuned responses at 
the level of the cell population as a whole.

•  Implicated in generating behavioral variability, as well as in cell fate decisions
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Stochasticity in Gene Expression in Bacteria  

In the absence of intrinsic noise, the two fluorescent proteins 
fluctuate in a correlated fashion over time in a single cell

=>  In a population, each cell will have the same amount of 
both proteins, although that amount will differ from cell to 
cell because of extrinsic noise 

Expression of the two genes may become uncorrelated in 
individual cells because of intrinsic noise, giving rise to a 
population in which some cells express more of one 
fluorescent protein than the other.

Intrinsic noise results in differences between two 
reporters in a single cells 

Extrinsic noise affects two reporters of same gene equally in 
single cell but causes differences from cell to cell 

Operationally, intrinsic noise for a given gene may be 
defined as the extent to which the activities of two 
identical copies of that gene, in the same intracellular 
environment, fail to correlate

Built E Coli strains with two reporter genes 
controlled by identical promoters. 
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Stochasticity in Gene Expression in Bacteria  

Intrinsic noise results in 
differences between two 
reporters in a single cells 

Extrinsic noise affects two 
reporters of same gene equally 
in single cell but causes 
differences in levels from cell 
to cell 

Built E Coli strains with two reporter genes 
controlled by identical promoters. 

Pathway specific noise affect 
two reporters equally but 
another unrelated gene 
differently 

Global noise affects distinct 
genes equally in single cell but 
causes differences in levels 
from cell to cell 
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xxx 

 
Population Heterogeneity in Bacteria  
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The coefficient of variation, or noise h, is 
defined as the ratio of the standard 
deviation to the mean of the population.

Once genetic mutation and local microenvironments are 
eliminated as sources of noise, an elegant experimental
method can assist in differentiating
among the remaining sourcesintrinsic, meaning noise sources 
that create differences between the two reporters within the 
same cell (Fig. 2A), and extrinsic, referring to sources that 
affect the two reporters equally in any given cell but create 
differences between two cells (Fig. 2B).

Intrinsic noise in PHO5 reporter protein levels is detectable and can 
result from slow interconversion between inactive and active promoter 
states due to stochastic chromatin-remodeling events. 

However, extrinsic noise is the  predominant form of noise for all gene 
promoters measured in these experiments. 

Simultaneous measurement of two independent, unrelated gene 
promoters indicated that much of this extrinsic noise is global in nature, 
presumably due to fluctuations in some factor that affects expression of 
all genes and not due to fluctuations in extrinsic factors that affect a 
particular gene.

 
Stochasticity in Gene Expression in Yeast  

Measured extrinsic noise (affecting expression of BOTH 
reporters) and intrinsic noise (affecting only ONE of the 
reporters)
⇒ Resolved intrinsic fluctuations in expression due to inefficient 

promoter activation that could not be picked up is transcripts 
from pooled cells were averaged out.

⇒ Reducing levels of chromatin remodeling factors (SWI/SNF, 
INO80, SAGA) increased intrinsic noise

⇒ Epigenetic factors buffer against noise arising from 
inefficient promoter transitions

Similar roles for chromatin (NuA4/Tip60 HAT complexes, 
nucleosome remodeling and HDACs) in suppressing phenotypic 
variation in C. elegans (Lehner et al, 2006)

Chromatin factors may modulate phenotypic consequences of 
mutations to a large number of genes and could act as a general 
buffer of genetic variation?
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Variation within Individuals:  

Gene Expression Noise or Stochasticity 
Complex regulatory networks orchestrate most cellular
processes in biological systems. Genes in such networks
are subject to expression noise, resulting in isogenic cell
populations exhibiting cell-to-cell variation in protein
levels. Increasing evidence suggests that cells have
evolved regulatory strategies to limit, tolerate or amplify
expression noise. In this context, fundamental questions
arise: how can the architecture of gene regulatory networks
generate, make use of or be constrained by expression
noise? Here, we discuss the interplay between
expression noise and gene regulatory network at different
levels of organization, ranging from a single regulatory
interaction to entire regulatory networks. We then
consider how this interplay impacts a variety of phenomena,
such as pathogenicity, disease, adaptation to
changing environments, differential cell-fate outcome
and incomplete or partial penetrance effects. Finally,
we highlight recent technological developments that
permit measurements at the single-cell level, and discuss
directions for future research.

•  How does expression noise influence the ability of a gene regulatory network to 
relay information accurately and robustly  (i.e. convert variations in its inputs into 
appropriate responses in its outputs)

•  How is noise buffered
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 Consequences of Noise and Stochasticity? 

Noise in biological systems?

•  What is the nature of stochastic noise in biological systems (prokaryotes, 
eukaryotes?)

•  How does noise give rise to phenotypic variation ?

•  How do cells harness noise for their own benefit ?

•  How to reconcile stochastic noise with developmental robustness?
(Waddington’s canalization or buffering)
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A balance between the noisy expression of certain key genes required for tolerating 
specific stress conditions and robustness conferred by generic stress tolerance genes 
is crucial in surviving diverse environmental stress. 

 
 Noisy Gene Expression and Stress Tolerance 

 Adaptation to fluctuating environments is 
facilitated by expression noise of key 
regulatory genes in a clonal cell population. 
For instance, upon nutrient starvation (red star), 
individual yeast cells in a population undergo 
sporulation in an unsynchronized fashion 
(horizontal profiles). 

Bet-Hedging: heterogeneity in sporulation 
timing is linked to expression noise in the 
master regulator Ime1p (Meiosis-inducing 
protein 1)

This favors the maintenance of non-sporulated 
cells that are pre-adapted in case of reversion to 
nutrient-rich conditions. The red solid circle 
denotes the point of commitment to the 
sporulation pathway. 

Chalancon	et	al,	2012	
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 Noisy Gene Expression and “Bet-Hedging” 

•  HIV latency: a bet-hedging strategy to 
optimize viral transmission  

•  Upon infecting CD4+T lymphocytes, HIV 
either actively replicates to rapidly produce 
progeny virions or enters a long-lived 
quiescent state (proviral latency), from 
which it subsequently reactivates.  

•  Latently infected cells form a viral reservoir, 
enabling life-long viral persistence and 
necessitating lifelong antiretroviral therapy 
(ART) for HIV-infected individuals.  

•  The evolutionary conundrum was how 
latency had been maintained over the 
centuries of natural lentiviral infections in 
non-human primates before the current ART 
era, given the rapid evolution of the virus.  

•  Stochastic 	
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How	does		chromatin	regulation	
modulate	stochastic	gene	expression	and	
transcriptional	bursting,		
	
implications	for	regulation	of	
pluripotency	and	development.	

 
Stochasticity in Gene Expression in Mammalian Cells? 

Mouse OS25 ES cells
Oct4 selection

Medium: serum/LIF

(1) Active genes

Single-cell RNA-Seq
(SMART-Seq)

Process data

Gene expression 
variation

Technical noise
Cell cycle variation
Stochastic gene expression
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ChIP-Seq
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Fig. 1 Summary of methodology. OS25 mESCs were cultured and characterized by single-cell RNA-seq using the Fluidigm C1 system, applying the SMARTer
kit to obtain cDNA and the Nextera XT kit for Illumina library preparation. OS25 cells are grown in conditions that select for undifferentiated cells (high
Oct4-expressing). Libraries from 96 cells were pooled and sequenced on four lanes of a HiSeq. After quality-control analysis of cells, 90 cells out of 96
remained for further analysis. We first unraveled contributions of components of gene expression variation using the scLVM method13. Removing cell cycle
variation and technical noise allowed us to focus on stochastic gene expression. Gene expression variation can be quantified by CV2 or DM, which is a
measure of noise independent of gene expression levels and gene length. To explore the transcriptional kinetics of OS25 ES cells, poisson-beta model16 was
fitted to single-cell gene expression data, leading to estimates of burst frequency and size. Next, histone and RNAPII promoter modifications were obtained
from Brookes et al.5 and integrated with single-cell RNA-seq to investigate relationship between stochastic gene expression and epigenetics. Active genes
with no PRC marks are usually in the “on” state with high burst frequencies (kon), PRCr genes are mostly “off” and PRC-active genes switch between “on”
and “off” states very frequently. Considering the allele-level possibilities, at active genes, both alleles would be in an actively transcribing state. For PRCa
genes, both alleles would be in an actively transcribing state, or both alleles would be in a silent PRC-marked state, or only one allele is in PRC-marked
state, which, subsequently, would result in noisier gene expression. For PRC-repressed genes, both alleles are expected to be in a silent PRC-marked state

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-00052-2 ARTICLE

NATURE COMMUNICATIONS |8: �36� |DOI: 10.1038/s41467-017-00052-2 |www.nature.com/naturecommunications 3

A subset of PRC-bound genes are actively 
transcribed by RNA polymerase II 

Role of Polycomb repressive complex to 
dampen expression of these genes?

How does  flipping between chromatin states 
alters the kinetics of transcription. 

Integrate histone modifications and RNAPII 
states derived from bulk ChIP-seq data with 
single-cell RNA sequencing data. 

PRC-bound  genes have greater cell-to-cell 
variation in expression than active genes.

PRC-active genes are clustered on 
chromosomes in 3D, and interactions with 
active enhancers promote a stabilization of 
gene expression noise.

Role in the regulation of pluripotency and 
development?
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Variation within Individuals:  

Stochasticity or Gene Expression Noise 
Complex regulatory networks orchestrate most cellular
processes in biological systems. Genes in such networks
are subject to expression noise, resulting in isogenic cell
populations exhibiting cell-to-cell variation in protein
levels. Increasing evidence suggests that cells have
evolved regulatory strategies to limit, tolerate or amplify
expression noise. In this context, fundamental questions
arise: how can the architecture of gene regulatory networks
generate, make use of or be constrained by expression
noise? Here, we discuss the interplay between
expression noise and gene regulatory network at different
levels of organization, ranging from a single regulatory
interaction to entire regulatory networks. We then
consider how this interplay impacts a variety of phenomena,
such as pathogenicity, disease, adaptation to
changing environments, differential cell-fate outcome
and incomplete or partial penetrance effects. Finally,
we highlight recent technological developments that
permit measurements at the single-cell level, and discuss
directions for future research.

•  Random fluctuations in expression levels of individual proteins can be due to 
the intrinsically stochastic nature of molecular interactions that underlie 
transcription, translation and post-translational regulation. 

•  Cell-to-cell variation in protein expression levels can result within clonal cell 
populations, despite a homogeneous environment

•  The protein output may not vary – due to buffering mechanisms

•  What are the mechanisms of noise and of buffering…?
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 Cytoplasmic Amplification of Transcriptional Noise 

and Increased Cell-to-Cell Variability 
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 Post-Transcriptional Feedback for Noise Suppression  

and Fate Stabilisation 
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Control of Noise 

Complex regulatory networks orchestrate most cellular
processes in biological systems. Genes in such networks
are subject to expression noise, resulting in isogenic cell
populations exhibiting cell-to-cell variation in protein
levels. Increasing evidence suggests that cells have
evolved regulatory strategies to limit, tolerate or amplify
expression noise. In this context, fundamental questions
arise: how can the architecture of gene regulatory networks
generate, make use of or be constrained by expression
noise? Here, we discuss the interplay between
expression noise and gene regulatory network at different
levels of organization, ranging from a single regulatory
interaction to entire regulatory networks. We then
consider how this interplay impacts a variety of phenomena,
such as pathogenicity, disease, adaptation to
changing environments, differential cell-fate outcome
and incomplete or partial penetrance effects. Finally,
we highlight recent technological developments that
permit measurements at the single-cell level, and discuss
directions for future research.

Infrequent 
transcription

Infrequent promoter 
transitions between 

active & inactive states

Changes in gene 
copy number

Negative 
feedback

(TF represses 
own 

transcription)
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Waddington’s landscape revisited 

How the epigenome may influence noise and a cell’s trajectory 
Complex regulatory networks orchestrate most cellular
processes in biological systems. Genes in such networks
are subject to expression noise, resulting in isogenic cell
populations exhibiting cell-to-cell variation in protein
levels. Increasing evidence suggests that cells have
evolved regulatory strategies to limit, tolerate or amplify
expression noise. In this context, fundamental questions
arise: how can the architecture of gene regulatory networks
generate, make use of or be constrained by expression
noise? Here, we discuss the interplay between
expression noise and gene regulatory network at different
levels of organization, ranging from a single regulatory
interaction to entire regulatory networks. We then
consider how this interplay impacts a variety of phenomena,
such as pathogenicity, disease, adaptation to
changing environments, differential cell-fate outcome
and incomplete or partial penetrance effects. Finally,
we highlight recent technological developments that
permit measurements at the single-cell level, and discuss
directions for future research.

•  Changing depth of the hills and valleys are governed in part, by changes in nuclear structure, 
chromosome dynamics and 3D structural variations of the nuclear lamina. 

•  Such structures are continually responding to cues and signals, both intra- and extracellular.
•  The epigenome may facilitate noise-induced phase transitions and the promotion or 

resolution of pluripotency. (Pujadas and Feinberg, 2012)

Not just TFs and 
transcriptional 

machinery

‘‘A multidimensional phase space is not very easy for the simple-minded biologist to imagine 
or to think about,’’ (Waddington, 1957). He was interested in ‘‘the course by which 
[developmental change] gets there’’

the	epigenome	can	developmentally	
regulate	the	degree	to	which	external	
(environmental)	noise	
can	influence	its	own	landscape	and	can	
explain	in	a	theoretical	
way	the	high	frequency	of	transitions	arising	
normally	during	
development	and	disease.	
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Obesity Polyphenism in Humans and Mice revealed by 

TRIM28/KAP1 Haploinsufficiency 

Mutations	in	the	chromatin-associated	co-repressor	Trim28/KAP1	
(Trim28+/D9)	affect	the	formation	of	a	
functional	TRIM28-ZFP57	complex,	which	in	turn	affects	chromatin	
states	and	modifications	during	
embryonic	development.	Such	(not	yet	identified)	epigenetic	
alterations	might	be	linked	to	a	downregulated	
expression	of	an	imprinted	cluster	of	genes	named	IGN1.	Reduced	
levels	of	components	of	the	
IGN1	network,	including	Nnat	and	Peg3,	could	lead	to	an	obese-ON	
program.	This	program	of	obesity	
susceptibility	is	linked	to	a	phenotypic	switch	in	the	body	weight	in	
adult	genetically	identical	Trim28+/D9	
mice,	rendering	them	either	normal	or	obese	but	without	an	
intermediate	phenotype.	Such	polyphenism	
might	be	influenced	by	environmental	signals	including	dietary	
conditions,	hormonal	signaling,	and	
changes	in	the	environmental	temperature,	occurring	in	early	life	
stages,	during	development,	or	potentially	
in	the	prior	generation.	

•  Measurements in monozygotic twins and inbred mouse strains indicate that epigenetic control can have 
substantial effects on body-mass outcomes. Isogenic C57Bl6/J mice, can vary by as much as 100% in 
body weight when fed a high-fat diet, even when reared in highly standardized laboratory conditions 
(Koza et al., 2006). 

•  Experiments in multiple model organisms suggest that pre-conceptual and early-life environment 
contribute to variability by reproducibly shifting offspring phenotype (reviewed in Patti, 2013; 
Daxinger and Whitelaw, 2012; Rando and Simmons, 2015). 

•  Epidemiological data suggest that similar regulatory mechanisms determine human phenotypic 
outcomes. Despite many investigations, we still know little about the mechanisms by which 
developmental trajectories are canalized and how these states are reproducibly altered.

•  Mechanisms by which developmental trajectories are canalized (polyphenism) and how these states are 
reproducibly altered?

TRIM28 is largely dispensable 
in fully differentiated adult.

Instead it is important for 
transcriptional programming 

in development.
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Obesity Polyphenism in Humans and Mice revealed by 

TRIM28/KAP1 Haploinsufficiency 

Mutations	in	the	chromatin-associated	co-repressor	Trim28/KAP1	
(Trim28+/D9)	affect	the	formation	of	a	
functional	TRIM28-ZFP57	complex,	which	in	turn	affects	chromatin	
states	and	modifications	during	
embryonic	development.	Such	(not	yet	identified)	epigenetic	
alterations	might	be	linked	to	a	downregulated	
expression	of	an	imprinted	cluster	of	genes	named	IGN1.	Reduced	
levels	of	components	of	the	
IGN1	network,	including	Nnat	and	Peg3,	could	lead	to	an	obese-ON	
program.	This	program	of	obesity	
susceptibility	is	linked	to	a	phenotypic	switch	in	the	body	weight	in	
adult	genetically	identical	Trim28+/D9	
mice,	rendering	them	either	normal	or	obese	but	without	an	
intermediate	phenotype.	Such	polyphenism	
might	be	influenced	by	environmental	signals	including	dietary	
conditions,	hormonal	signaling,	and	
changes	in	the	environmental	temperature,	occurring	in	early	life	
stages,	during	development,	or	potentially	
in	the	prior	generation.	
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Cell to cell variation within Individuals: Starting with Noise? 

•  Noisy systems can generate cell-to-cell variability (unique behaviour) in 
genetically identical cells 

•  This can sometimes be buffered (canalisation): some gene networks and 
chromatin systems have evolved to minimize the effects of noise

•  Or it can provide cellular plasticity  that can be more or less stably propagated

•  Population robustness: variability in a population of cells allows essentially binary 
decisions, such as cell death, to turn into more flexible and fine-tuned responses at 
the level of the cell population as a whole.

•  Implicated in generating behavioral variability, as well as in cell fate decisions

•  At the root of any change in cell fate is a single event that triggers a cascade of 
subsequent changes. It may well be that the capacity for some gene promoters to 
act in a bimodal fashion is a fundamental requirement of multicellularity.

 
•  Intra-organismal phenotypic diversity is generated in part by stochastic events

•  Cellular variation can lead to mosaic physiology : individual physiological 
systems contain multiple phenotypes simultaneously
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 Mosaic Physiology  

 
xxx 

Whereas	the	stereotyped	differences	between	
one	cell	type	and	another	often	reflect	
deterministic	developmental	programs,	mosaic	
physiology	focuses	on	subtler,	stochastically	
driven	differences	among	cells	(and	tissues	and	
organs)	of	a	particular	type.	`	
Mosaic	physiology	is	not	an	organismal	
panacea	that	could,	in	excess,	solve	any	
functionalnproblem.		
The	outcome	for	any	lineage	at	any	point	in	its	
evolutionary	history	will	depend	on	its	
environments,	its	geneticvariation	for	
performance,	etc.	In	this	same	way,	mosaic	
physiology	
could	exhibit	specialist–generalist	trade-offs.	A	
specialist	phenotype	

A	typical	conception	of	the	development	of	a	
homeostatic	system.	A	single	cell,	or	group	of	
cells,	gives	rise	to	tissues	and	organs	devoted	
to	controlling	some	particular	factor.	The	
system	carries	out	homeostasis	whenever	it	
regulates	levels	of	the	
factor	(here	called	A)	inside	the	organism,	such	
that	internal	fluctuations	are	dampened	
compared	with	external	or	environmental	
variation	in	the	factor.	Often	
such	systems	fail	at	environmental	extremes.		

XCI mosaicism provides 
physiological advantages 

in the brain
COURS 2018



X-Chromosome Inactivation 

Xa	 Xa	 X	 Xi	

Xist		
RNA	

One of the two X chromosomes must be silenced during early 
embryogenesis in order for female development to proceed 

 
Stochastic switch followed by cellular memory 

RNA	Pol	II	

Ac	 H3K4	
me2	

Ac	 Ac	 Ac	

H3K4	
me3	

Pc?		 H2A		
Ub	

H3K27	
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me2	

Active	X	chromosome	 Inactive	X	chromosome	

5-methyl	cytosine		

	

Xist	RNA	
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!	Genes	in	same	domain	are	coordinated	

Edda	Schulz,	Johanes	Meisig	&	Nils	Blüthgen	

Same	domain	
Different	domain	

Same	random	domain	

A role for stochastic switching in 3D chromosome folding enables Xist 
to be monoallelically up-regulated?

Topological	domains	

Gene	expression		
dynamics	

Nora	et	al,	Nature	2012	

Xa	 Xa	 X	 Xi	

Xist		
RNA	



Nora	et	al.	(2013)	Bioessays	

Genes and their regulatory elements tend to be organised into 
Topologically Associating Domains

Elphege	Nora	

"  A by-product of regulatory landscapes? 

“Spatial	Partitioning	of	the	Regulatory	landscape	of	the	X-inactivation	centre”	(Nora	et	al,	Nature,	2012)	
“Topological	domains	in	mammalian	genomes	identified	by	analysis	of	chromatin	interactions”	(Dixon	et	al,	Nature,	2012)	
“Three-Dimensional	Folding	and	Functional	Organization	Principles	of	the	Drosophila	Genome”	(Sexton	et	al,	Cell,	2012)	
	

Spatial	domains	(100kb-1Mbp)	of	preferential	interactions,		separated	by	10-50kb	
«	boundaries	»	that	are	stable	during	development	and	conserved	across	mammals	
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Two clusters of structurally similar conformations exist for the Tsix 
TAD in the cell population

25%		
“elongated”	

75%		
“compact”	

	Two	conformation	clusters	

Luca	Giorgetti	et	al,	Cell	2014		

L.	Giorgetti	et	al	(2014)		“Predictive	polymer	modeling	reveals	coupled	fluctuations	in	
chromosome	conformation	and	transcription”	Cell,	157:	950–963.		

Extracting	single	cell	information	from	cell	population-
based	5C	data	by	predictibe	polymer	modeling	

	
Identified	a	series	of	“master”	beads	that	are	required	
for	TAD	structure	-	and	predicted	3D	distances	as	well	

as	distributions	of	interactions		

Linx  

Tsix 
Chic1 

“Elongated”	 “Compact”	or	“interactive”	

MRSD	
clustering	

Cluster	the	thousands	of	
conformations	present	in	
the	data	according	to	their	

structural	similarity	

These two 
conformations 
correspond to 

specific 
transcriptional 

 states 
Quantitative RNA FISH 

combined with 3D DNA FISH 



Alternate	conformations	lead	to	interactive/uninteractive	Tsix-Linx-
Chic1	structures	that	may	facilitate	asymmetric	Tsix	expression		

L.	Giorgetti	et	al	(2014)	Cell,	157:	950–963.		

Dynamic switching in conformations of the Tsix TAD: possible 
mechanism for monoallelic Xist expression  during random XCI?

Alternate	configurations	might	enable	asymmetric	Tsix	expression	
via	its	varying	interaction	with	Linx	and	Chic1	loci	

Alternate	chromatin	conformations	allow	stochastic	Tsix	enhancer-
promoter	contacts	for	choice-making	during	random	XCI	

E. Heard, November 2018 

Conformational	changes	within	one	TAD	are	likely	to	occur	on	timescales	that	are	much	shorter	
than	the	duration	of	one	cell	cycle.	This	suggests	that	genes	and	their	regulatory	elements	may	

come	together	and	disassociate	several	times	during	a	cell	cycle.	
	

Tiana	G,	et	al.	(2016)	Structural	Fluctuations	of	the	Chromatin	Fiber	within	Topologically	Associating	Domains.	
	Biophys	J.	110:1234-45.	

		



Autosomal random monoallelic expression: 
can also generate phenotypic diversity ?

(Gendrel et al, 2014; Gendrel  et al, 2016)

Other	mammalian	genes	may	
show	similar	patterns	of	both	monoallelic	
and	biallelic	ongoing	stochastic	
expression.	In	a	survey	of	
allelic	imbalances	in	gene	expression	
in	heterozygous	human	cells,	
18%	of	the	more	than	120	genes	
assayed	displayed	consistent	biases	
in	expression	patterns	toward	one	
allele	(16).	Such	imbalanced	expression	
may	be	due	to	slow,	reversible	
stochastic	fluctuations	in	gene	expression,	
or	it	may	be	due	to	stochastic	
events	in	processes	other	
than	gene	expression,	nonrandom	
epigenetic	factors,	or	polymorphism	
in	regulatory	sequences	



Random Monoallelic Gene Expression 

Allelic variation : Polymorphic regulatory sequences Epiallele : epigenetically marked regulatory sequence

Genetic Epigenetic

BUT how much of this is Epigenetic vs DNA sequence polymorphism?
What are the consequences? What are the mechanisms?

• Important for development? 
• Involvement in cell specification & lineage determination?
• Mechanisms: differential marking of identical alleles via ncRNAs, dosage sensitive 
   regulation, pairing, epigenetic marks….?
• Implications for disease: epigenetic silencing of one allele is a functional equivalent 
of loss of heterozygosity (LOH), even if the genome is still apparently intact.

 Random monoallelic gene expression: 
a “raison d’être” or accidental silencing?

Intrinsic noise can produce fluctuations in
the relative expression of two alleles of the 
same
gene in a heterozygote, potentially resulting in
cells that express no allele, either individual
allele, or both alleles. If the two alleles are
functionally divergent, the population of cells
could acquire heterogeneity (Fig. 3B). Such
fluctuations may contribute to the still-debated
phenomenon of hybrid vigor. Alternatively,
intrinsic noise in the case of haploinsufficiency
may result in increased levels of noise or 
complete
loss of function in a subset of cells. Such a
mechanism has been proposed in the case of the
human tumor suppressor gene NF1 (17) and
prostate neoplasia formation in the mouse (18).
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Expression of both alleles A and A’ 
detected in the population

Clonal population 
expressing only A

Clonal population 
expressing only A’

Detecting randomly monoallelically expressed genes
RNA sequence information

RNA FISH

Intrinsic noise can produce 
fluctuations in
the relative expression of 
two alleles of the same
gene in a heterozygote, 
potentially resulting in
cells that express no allele, 
either individual
allele, or both alleles. If the 
two alleles are
functionally divergent, the 
population of cells
could acquire heterogeneity 
(Fig. 3B). Such
fluctuations may contribute 
to the still-debated
phenomenon of hybrid 
vigor. Alternatively,
intrinsic noise in the case of 
haploinsufficiency
may result in increased 
levels of noise or complete
loss of function in a subset 
of cells. Such a
mechanism has been 
proposed in the case of the
human tumor suppressor 
gene NF1 (17) and
prostate neoplasia 
formation in the mouse 
(18).
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 Random Monoallelic Gene Expression 

•  Intrinsic noise can produce fluctuations in the 
relative expression of two alleles of the same gene 
in a heterozygote, potentially resulting in cells that 
express no allele, either individual allele, or both 
alleles.  

 
•  If the two alleles are functionally divergent, the 

population of cells could acquire heterogeneity 

•  Such fluctuations may contribute to the still-
debated phenomenon of hybrid vigor? 

•  Alternatively, intrinsic noise in the case of 
haploinsufficiency may result in increased levels of 
noise or complete loss of function in a subset of 
cells (functional nullisomy) 



P-ERK D1 neurons Merge 

X-chromosome inactivation and monoallelic expression:  
Stochasticity and cellular memory to generate phenotypic diversity?  

Gendrel, Marion-Poll, Kato and Heard 2016)E. Heard, November 2018 
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 SUMMARY 

•  Cell-level stochasticity can generate diversity in gene 
expression patterns 
•  It can give differences in cell physiological phenotypes 
•  It can non-clonal, stably propagated, or metastable  
•  It can lead to different phenotypes within and between 

individuals 
•  This cellular diversity can provide a greater range of 

functional abilities for the organism eg cell determination 
•  It can help monocellular organisms perform and survive better 

during extreme stress 
•  It can be advantageous for the cell but deleterious for the 

organism (eg cancer) 

•  COURS III (4/12/2018): Environmentally induced 
epigenetic variation 



One-day meeting on transgenerational epigenetic inheritance

The CNRS Research Networks GDR ADN and GDR ImaBio together with Sorbonne University 
are organizing a one-day meeting on transgenerational epigenetic inheritance.
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Quelle est l’influence de l’environnement sur les 
modifications épigénétiques et leur transmission? 

 
 CHAIRE ÉPIGÉNÉTIQUE ET MÉMOIRE CELLULAIRE 

 
 Année 2018-2019:  

“Épigénétique, Environnement et Biodiversité” 
 

4 Décembre 2018 


