Ocean and Climate Change, March 30, 2012, Paris

Water masses and circulation in the North Atlantic

Monika Rhein, Universität Bremen

Dagmar Kieke, Christian Mertens, Achim Roessler, and Reiner Steinfeldt

Universität Bremen

• ocean and climate change: go where the big signal is

Rahmstorf, 2002

Evolution of the AMOC, 1999-2100 Scenario A1B, IPCC Report, 2007: reduction of about 30%

one key region: **subpolar North Atlantic** SSH-changes (cm) after weakening of the AMOC by 30% caused by circulation changes

ORCA Ocean model, C. Böning, GEOMAR

Atmospheric Temperature Change after cessation of AMOC

Stouffer et al., 2006

A1B: 2090-2099

Temperature change relative to 1990. IPCC, 2007

Ocean and Climate Change, March 30, 2012, Paris

• BUT

• variability on interannual, decadal and longer time scales dominate observations

- time series too short to separate trend from variability
- need to measure and understand variability

- LSW water mass formation changes
- Subpolar gyre: NAO, transports, water masses
 - Circulation in western basin
- Circulation of newly formed deep water in the North Atlantic
 - Future observations

Temperature and Salinity, Labrador Sea 1970-2009

Yashayaev and Loder, GRL, 2009

Layer thickness evolution in the Labrador Sea

- production of different modes of LSW
- changes in the layer thickness serve as proxy for LSW formation
- increase of upper LSW, decrease of deep LSW over past 15 years

CFC-12 inventories for the subpolar gyre

Trajectories of Argo floats crossing the MAR

• LSW water mass formation changes

• Subpolar gyre, NAO, and AMOC

• Circulation in western basin

• Circulation of newly formed deep water in the North Atlantic

• Future observations

Böning and Biastoch, 2008

- Positive MOC anomalies follow periods of intensified LSW formation
- Amplitude of decadal MOC variability: ~ 2 Sv at 40°N
- from overflow another +-1-2 Sv (Latif et al., 2006)

Asymmetric response to NAO+ and NAO- (Lohmann et al., 2009)

Difference SSH between NAO+ and neutral state: initial strengthening and cooling of subpolar gyre followed by warming and weakening

Difference SSH between NAO- and neutral state: subpolar gyre weakens

• LSW water mass formation changes

• Subpolar gyre: transports

• Circulation in western basin

• Circulation of newly formed deep water in the North Atlantic

• Future observations

Transports across the MAR

Moored PIES 2006 - 2015

DWBC transports at 47°N

DWBC-mooring array 2009-2011 (snap-shot v-field from 2010 in the back)

Inflow and export of NAC and deep water in Newfoundland Basin at 47°N

What is the fate of the newly formed deep water south of the subpolar gyre?

?

- CFC data, 65°N 20°S, 1980-2005: GLODAP, CARINA, and others: about 20.000 measurements on 3700 locations
- Calculate parameters, that are **independent of sampling date**: age and fraction of young water (subpolar region only data 1996-99)

• produce maps of ages and fractions of young water

- fraction of LSW and DSOW younger than 40 years
- age of LSW and DSOW

• LSW and DSOW ages in the DWBC mostly younger than in the interior: *DWBC fastest way and DWBC continuous*

 Zonal LSW age gradient north of 35°N smaller than south of that latitude: *interior pathways in subpolar NA and between both gyres*

• DSOW more focused at western boundary than LSW: *guided by topography*

• LSW and DSOW fractions in DWBC higher than in interior: *DWBC continuous*

Fraction decreases downstream: exchange with
ocean interior

• *largest along-stream age and fraction gradients in Newfoundland Basin: encounter with the NAC*

• *small gradients* in the Labrador Sea **AND** in *the recirculation zone*

• continuous time series of transports, formation rates, and water mass changes in key regions of North Atlantic are emerging

• Intense circulation at 47°N in interior basin: mixing between old and young deep water

• DWBC continuous and important to transport young deep water, interior pathways between subpolar and subtropical gyre Midatlantic Ridge: 2006 – 2013, funding submitted till 2015 (Rhein / Klein) 47°N: DWBC 2009 – 2012, PIES full array 2013 – funding submitted till 2015 (Rhein) Flemish Pass 2011 – 2015 funded (Kieke / Jochumsen)

2012

Aida Rios, Vigo;

2013,2014

EGU 2012, Vienna Thur, Fri: OS 1.2 The North Atlantic: Natural variability and Global Change

Conveners: Monika Rhein and Richard Greatbatch

Invited talks: Mojib Latif, Simon Josey, and Xiaoming Zhai

North Atlantic Session IUGG Meeting, July 22-26 2013, Gothenborg, Sweden http://www.iahs-iapso-iaspei2013.com/

Conveners:

Monika Rhein Richard Greatbatch Nicolas Gruber Sergey Gulev Bogi Hansen Simon Josey Thomas Jung