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Mendelian genetics: a success storyMendelian genetics: a success story
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Genome wide association studiesGenome wide association studies
• HapMap and 1000 Genomes projects provided us with high resolution LD map
• December 2010: 1212 published loci at p<5x10-8 for 210 traitsDecember 2010: 1212 published loci at p 5x10 for 210 traits

How do we move from association to causation?How do we move from association to causation?



Improving our analysisImproving our analysis
• GWAS studies use an overly simplistic genetic model that detects the effect of 

single genomic variants while from biology it is obvious that the extensive g g gy
phenotypic variations can not be explained by the single effects of ~25.000 protein 
encoding genes. (epistatic effects or gene-gene interactions).

• Problem: Testing all possible SNP-SNP combinations would require extremely 
large sample size (multiple testing)

• Pre-select physically unlinked pairs that show strong LD, these are more likely to 
be involved in functional interactions

tSNP1 tSNP2 tSNP3

  
tSNP1 tSNP3

Chr 1 Chr 15
Bochdanovits et al. PloS One 2008



Association fine mapping and causalityAssociation fine mapping and causality
• Linkage disequilibrium (LD) mapping by SNP tagging widely used for gene localization

• Existence of LD limits the resolution of fine mapping

• Population specific LD patterns can help reduce the critical region

• Resequencing to identify all variants (100s to 1000s) 

• Which is the causal (often non-coding) variant?



Non-coding variants- eQTLNon coding variants eQTL

DNA Genotype Data
(SNP polymorphism)

mRNA

(SNP polymorphism)

Gene expression Data

Protein

• Expression profiles from large tissue series are 
l t d ith SNP th th h th irelated with SNPs across the genome through their 

correlated variations.

• Until now based on microarray data• Until now based on microarray data 
(limited to protein coding genes) 

Símon-Sánchez et al. Nat. Genet 2009
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The case of missing causalityThe case of missing causality
• Association studies point to a genomic locus but do not identify the causal

variant(s)variant(s).
• Gene-gene and gene-environment interactions are not systematically tested
• Majority of GWAS signals points to noncoding regions in our genomej y g p g g g
• The combined effects of many (small) risk factors are responsible for 

disease

Major obstacles for demonstrating causality are 
1) the very limited functional annotation of our genome1) the very limited functional annotation of our genome 
2) the lack of appropriate biological validation tools for (combinations 

of) risk factors with small effect size and gene-gene interactions.



How to prove causality?
Mendelian disorders: 
- co-segregation of variant and phenotype in family

How to prove causality?

co segregation of variant and phenotype in family
- Variant rare in general population

Functional confirmation- Functional confirmation 
(Evolutionary conservation; cellular or animal model; complementation)

Multifactorial disease:Multifactorial disease: 
- Individual risk factors are neither necessary nor sufficient
- Variants common, no co-segregation with phenotype in families

- Majority of identified variants are non-coding and biologically plausibility is 
often not apparent.
- How do we model risk factors with OR 1,1-1,3?
- Different effects can be predicted, no single test for effect of mutation.
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Functional annotation of the human genomeFunctional annotation of the human genome
• Our definition of a gene has changed;
• Only 1-2% of the genome consists of protein encoding genes but ~80% of theOnly 1 2% of the genome consists of protein encoding genes but 80% of the 

genome is transcribed into RNA
• Most protein encoding genes also show: antisense transcription, alternative start 

sites alternatively splicingsites, alternatively splicing
• Regulatory elements can be located as far as 1Mb away and skip over genes

• ENCODE was performed on 1% of genome using well established cell lines.

Lettice et al. 2003



2010-2013
Aims:
- map of human promoters of primary cells and tissues!

2010-2013

- map of human promoters of primary cells and tissues!
- models of transcriptional regulatory network models of each cellular 

state. 

Methods:
- deepCAGE sequencing on the Heliscope on RNA isolated from 

j h- every major human organ, 
- >200 cancer cell lines, 
- 30 time courses of cellular differentiation, 
- mouse developmental time courses 
- >200 primary cell types.

We are the main provider of human brain tissues and primary cells and
participate in data analysis. 
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Functional annotationFunctional annotation
• 15 brain regions; selected cell types; neonatal, adult and aged and brains

• Correlate gene expression (CAGE) in human post-mortem brain with 
genomic variation (SNPs/CNVs), epigenetic changes (methylation) and DNA 
binding (ChIP-seq)

• Compare brain expression and conservation of promoter sequence between• Compare brain expression and conservation of promoter sequence between 
human and other primates (Macaque; marmoset)

• Improved annotation will generate testable hypothesis for identified 
associations

• Data will be available in public domain (ZENBU and UCSC browsers)



Pilot study; 5 aged individuals 5 brain regionsPilot study; 5 aged individuals, 5 brain regions
• 80M tags sequenced: caudate, frontal and temporal lobe, hippocampus and putamen
• 70% TSS in 5’ region of annotated genesg g
• 25% promoters intergenic
• 5% >500 kb from annotated gene
• Many alternative promoters and antisense transcription
• 20% preferentially expressed in one brain region
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Functional pathways and gene networksFunctional pathways and gene networks
• For multifactorial disorders the combined and small effects of many different 
genomic variants in many different genes within a pathway result in diseaseg y g p y
• Models for multifactorial disorders should integrate the effects of multiple 
gene variants.
• Improved annotation will help generate testable hypothesis for identifiedImproved annotation will help generate testable hypothesis for identified 
associations

• Are classical cellular and animal models feasible?• Are classical cellular and animal models feasible?
- small effect size
- large numbers of variations

M d liMendelian
vs.

Multifactorial



Integrating datasets to study functional networksIntegrating datasets to study functional networks 
Examples in lower organisms:  
Yeast: Yeger-Lotem et al. Bridging high-throughput genetic and transcriptional 
data reveals cellular responses to alpha-synuclein toxicity. Nature Genetics 2009.

C.elegans: Kamath et al Systematic functional analysis of the Caenorhabditis
l i RNAi N t 2002elegans genome using RNAi Nature 2002

Drosophila: Boutros et al, Genome-Wide RNAi Analysis of Growth and 
Viability in Drosophila Cells Science 2004Viability in Drosophila Cells Science 2004

- Approach feasible in mammalian systems?
experimental variation ↓↓- experimental variation ↓↓

- reproducibility ↑↑
- sensitivity ↑↑

- Automated cell culture
- HTS and HCS cellular assays



High Throughput High Content ScreensHigh Throughput-High Content Screens
in neuronal cells

15 Jain & Heutink; Neuron 2010



Systematic gene network analysisSystematic gene network analysis

• Create robust High Content assays
Primary target ↑↓

g y

• (Genome wide) enhancer-suppressor screens

• Secondary screen with additional constructs

• Confirmation in primary cells

Toxin

• Rescue/complementation experiments

T t l t d lti l i• Test selected multiple-gene comparisons

• Describe functional pathway

• (Define best drug targets)

• (Compound screens for therapy development)• (Compound screens for therapy development)

phenotypephenotype phenotype



Automated workflow to reduce experimental variation

Incubator Hamilton ML STARHEPA-Filter Hood

Automated workflow to reduce experimental variation

Culture mediumRobot arm

17

Control PC
Cellavista



Biological question and assay designBiological question and assay design
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Reported physical and functional interactions DJ-1
•MPTP
•Environmental 
toxins
•6 hydroxdopamine

Reported physical and functional interactions DJ 1
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Experimental design to verify 42 interactors
• WT and DJ-1 KD cell lines plated into 96 well plates:  5000 cells per well

– Experiments performed in triplicate

Experimental design to verify 42 interactors

Experiments performed in triplicate
– shRNA knockdown of 42 genes/5 shRNA’s per gene (TRC1 shRNA library)
– Virus pre-plated into assay plates – known interactors of DJ1 
– Negative controls per plate – scrambled shRNAg
– Positive controls per plate – cells incubated with 0.1% saponin for 10mins
– Wells with no cells for background (used as control for data acquisition)

• SH-SY5Y cells were infected and subsequently differentiated for 7 days
– On day 5 toxin added for 24 hours
– Cells assayed for viability 
– Automated antibody staining for DJ-1 translocation
– Automated antibody staining for neurite outgrowth

Data is collected using several instruments• Data is collected using several instruments



Modifiers of DJ1 functionModifiers of DJ1 function

Cell viability (red); Neurite outgrowth (green); DJ-1 translocation (purple)



Modifiers of DJ1 function – Cell viabilityModifiers of DJ1 function Cell viability

EIF4EBP1 eukaryotic initiation factor 4E binding proteinEIF4EBP1 - eukaryotic initiation factor 4E binding protein
- Negative regulator of eIF
- Loss  of DJ1 leads to increased translation of specific mRNA targets 
- Loss of eIF4EBP1 may add to the deregulation of translation 



Modifiers of DJ1 function – EIF4EBP1Modifiers of DJ1 function EIF4EBP1

• Effect validated with additional shRNA clones

• Inhibition of EIF4EBP-1 activation by rapamycin leads to reduced levels of 
protein translation and hypothetically prevent cell death

• Addition of rapamycin to DJ1 deficient cells prevent cell loss. 

• Rapamycin used by NIH consortium for ADMET testingp y y g



Reported physical and functional interactions DJ-1
•MPTP
•Environmental 
toxins
•6 hydroxdopamine

p p y J
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Assay building and validationAssay building and validation
α-synuclein

phosporylation APP processing MAPT splicing

Adapted from Sato et al. 2002

phosporylation
and aggregation

APP processing MAPT splicing

Adapted from Opazo et al. 2008



But how to model multifactorial disease?

• To model the combined effects of tens to hundreds of (weak)

But how to model multifactorial disease?

To model the combined effects of tens to hundreds of (weak) 
genetic risk factors, differentiated patient specific iPS cells 
holds great promise but:

- differentiation protocols need to be improved.
- iPS need to be extensively characterized



VU University Medical Center
Philip Scheltens
Wiesje van der Vlier

Section Medical Genomics

David Sondervan
Dennis Hölzer Wiesje van der Vlier 

Yolande Pijnenburg
Henk Berendse
Anke Dijkstra
Wilma van den Berg
A i k R ll

Sasja Heetveld 
Margeritha Franscescati
Ashutosh Dinghra
Sjirk-Jan Zijlstra
Francesca Mela Annemieke Rozemuller

Other
Bob van Hilten (Leiden)
Bart Post (Amsterdam)

Francesca Mela
Shushaint Jain
Javier Símon-Sánchez
Luba Pardo-Cortes
Zoltán Bochdanovits
Patrizia Rizzu Bart Post (Amsterdam)

Bart van den Warrenburg (Nijmegen)
Vinod Subramaniam (TU-Twente)
Andy Singleton (NIH)
John Hardy (UCL)
I t ti l PD G i ti

Patrizia Rizzu

VU University

Eva Blaas International PD-Genomics consortium
Piero Carninci (RIKEN)
Vania Brocolli (Milan)
Stefano Gustincich (Trieste)
Geoff Faulkner (Edingburgh)

Ronald van Kesteren
Guus Smit


