Interplay between SDW and PDW orders in the cuprates

Andrey Chubukov Vuxuan Wang Daniel Agterberg

University of Minnesota

University of Wisconsin

Brookhaven Natl Lab

Rahul Nandkishore

Princeton University

Workshop on Cuprate Superconductors, Paris, March 27, 2015

Original motivation: to verify whether both superconductivity and charge order in underdoped, yet still metallic cuprates, come from the same spin-fluctuation exchange

> It ended up with: a generic analysis of charge orders in systems with cuprate Fermi surface

Our first interest was to analyze CDW order with (Q,0)/(0,Q)

following Metlitski and Sachdev Efetov, Pepin and Meier on (Q,Q) order La Placa and Sachdev on a generic CDW

$$\Delta_{k}^{Q} = A + \overline{A} \left(\cos k_{x} + \cos k_{y} \right) + B \left(\cos k_{x} - \cos k_{y} \right) + \dots$$

d-wave component is larger because interaction is repulsive and is peaked at large momentum transfer $((\pi,\pi)$ in our case)

d-wave (bond order) and s-wave (CDW) are both present, d-wave is larger Davis, Sachdev

There is more: (Q,0)/(0,Q) order can break several symmetries

Expected: incommensurate CDW breaks translational U(1):

Less expected: CDW can also break time-reversal symmetry

$$\Delta_{k}^{Q} = < c_{k+Q}^{+} c_{k-Q}^{-} > = (\Delta_{k}^{Q})^{*} = |\Delta_{k}^{Q}| e^{i\varphi}$$

It may also break C_4 lattice rotational symmetry by choosing (Q,0) or (0,Q)

$$\widehat{T} \Delta^Q_k = c^+_{\text{-}k+Q} \ c^-_{\text{-}k-Q} = \Delta^Q_{\text{-}k}$$

If the phases of Δ_k^Q and Δ_{-k}^Q differ by +- $\pi/2$, T symmetry is broken and the order has incommensurate density modulation and incommensurate current Real space picture for stripe CDW with $\Delta_{-k}^{Q} = i \Delta_{k}^{Q}$

Q = (0, Q)

$$\delta \rho = \Delta_{k}^{Q} + \Delta_{-k}^{Q} \propto \cos Qy,$$
$$j_{x} = \Delta_{k}^{Q} - \Delta_{-k}^{Q} \propto \sin Qy$$

Such an order also breaks X and Y mirror symmetries and give rise to Kerr effect

It generates incommensurate magnetic field but no bulk homogeneous magnetic field

$$X$$

A possibility that CDW order breaks additional discrete symmetries is quite encouraging as there is exp evidence for discrete symmetry breaking near the onset of CDW

- NMR, structural, X-ray, STM, ARPES measurements incommensurate static charge order U(1)
 Julien, Proust, Le Tacon, Chang, Davis, Damascelli
- resistivity anisotropy measurements Z_2 lattice rotational C_4 symmetry is broken down to C_2 Taillefer, Kivelson, Tremblay
- Kerr effect and neutron scattering measurements \mathbb{Z}_2 time-reversal symmetry is broken

Kapitulnik, Bourges

No discrete symmetry breaking for bond order with (Q,Q)

Orders with (Q,Q) and (-Q,Q)do not couple to each other, hence no C_4 symmetry breaking between the two (Q,Q) and (0,Q) orders do couple to each other, and the coupling, if strong enough, leads to C4 breaking (stripes)

No T-breaking

Allows for T-breaking

A generic reasoning: if the ordered state breaks both continuous and discrete symmetries (U(1) and $Z_2 *Z_2$ for CDW), discrete symmetries generally get broken at higher T and at intermediate T the system has a "nematic" order

Kivelson

At least at some dopings discrete symmetry breaking has been observed at higher temperatures than static CDW

Taillefer

Let's see what theory says about discrete symmetry breakings

• Ginzburg-Landau analysis for 4-component order parameter

 $\Delta_{1x,} \Delta_{2x,} \Delta_{1y,} \Delta_{2y}.$

"Hot spot" CDW model (low-energy fermions separated by Q)

Parameters: coupling g and energy cutoff Λ , theory is under control when $g < \Lambda$

The results of the GL analysis

- We did obtain stripe phase, with $\Delta_{1x} = +-i \Delta_{2x}$ but ONLY when $g \sim \Lambda$
 - When g < Λ, we did find a checkerboard state

And this forced us to realize that the analysis is incomplete

Back to Catherine's talk

d-wave superconductivity and (Q,Q) charge order are degenerate "twins"

Metlitski and Sachdev Efetov, Pepin and Meier

Does CDW has a "twin"?

Yes, its twin is superconductivity with a finite momentum of a pair (PDW)

> Kivelson and Fradkin P.A. Lee, D. Agrerberg....

$$\Delta_{k}^{Q} = < c_{k+Q}^{+} c_{k-Q}^{-} >$$

PDW

• Ginzburg-Landau analysis for 8-component order parameter

CDW: Δ_{1x} , Δ_{2x} , Δ_{1y} , Δ_{2y} , PDW: $\underline{\Delta}_{1x}$, $\underline{\Delta}_{2x}$, $\underline{\Delta}_{1y}$, $\underline{\Delta}_{2y}$

Same hot spot model (low-energy fermions separated by Q)

Same parameters: coupling g and energy cutoff Λ Let's set $g < \Lambda$ and play "by the rules"

We still get a checkerboard state, but a rather specific one: CDW along one direction, PDW along the other

CDW between 1 and 5: $1 = (\pi - k, k)$, $5 = (\pi + k, k)$, transferred momentum 1 - 5 = (-2k, 0)

PDW between 1 and 2: $1 = (\pi - k, k), 2 = (\pi - k, -k),$ total momentum 1+2 = (-2k, 0)

"Orthogonal" CDW and PDW orders carry the same momentum!

This charge order:

- breaks C₄ (CDW is a stripe along X or along Y)
- breaks time-reversal symmetry and generate incommensurate density fluctuations and incommensurate current

The reason it minimizes GL energy is rather subtle:

CDW and PDW, which carry the same momentum, together generate a secondary uniform s- type superconductivity

Triple coupling generates uniform SC order, and this reduces the energy of the CDW/PDW state This leads to the specific prediction:

• In the normal state, fermionic damping is non-zero, hence a small SC gap is difficult to detect in ARPES

Abrahams, Millis, Norman, A.C

But in a co-existence state with a true d-wave SC with a large gap and reduced fermionic damping, additional s-wave gap component can be detectable. Two states are possible: s+d and s + e^{iφ} d. In both cases, the gap along the nodal direction is non-zero

Search for s-wave component of SC gap in the co-existence state

The presence of PDW also helps explain ARPES data, which without PDW component would be inconsistent with the theory

P.A. Lee

Comparison with ARPES

Pure CDW state

Model: domains of CDW (0,Q) and (Q,0), plus a finite damping to model a disordered CDW between T* and T_{CDW}

2. Shift of the position of the minimum to a larger value

I. Vishik et al, Rui-Hua He et al

However, pure CDW cannot explain the behavior closer to zone diagonals

Experimental dispersion approaches Fermi level from below. In pure CDW description, the lower branch just keeps moving down in energy, and the upper branch lowers and hits the Fermi surface CDW + PDW

Phase diagram

THANK YOU