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Effective Field Theory Approach

* Emphasis on broken symmetries,

e Sharp distinctions between phases of matter
(mostly based on long-range order).

* Long-distance low energy emergent
properties.



Vestigial Order

When there is a sequence of transitions separating an ordered
(broken symmetry) state from a disordered (symmetric) state,
intermediate phases that restore some but not all of the

symmetries broken in the fully ordered state can be said to have
“vestigial order.”

Electron Nematic Order

Spontaneous breaking of rotational (point group) symmetry
as an emergent property of the electron fluid (in a crystal).

Role of Quenched Disorder

When spontaneous breaking of spatial symmetries occurs
in solids, quenched disorder is always qualitatively important.



Theory of Vestigial Nematic Order

We will consider a concrete model problem
(which may, however, be directly applicable
to the charge-ordering phenomena
found in the cuprate high temperature
superconductors and spin and charge ordering
in the Fe-based superconductors)



Incommensurate CDW Order
p(F) = p + [La(FE'DT 445y (M@ 4 cc] + ..

Stripe ordered phase : [(¢;)] # 0 or |(1,)| # 0
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Checkerboard ordered phase : |(¢,)]| = [(¥y)| # 0
with {[[4,[2 — [, %]) = 0

Nematic phase : [(¢5)] = 0 and |(3,)| =0

but ([l |? — [ [2]) = A # 0

L. Nie, G. Tarjus, and SAK PNAS (2013)



Snapshot of a fluctuating stripe nematic

* Stripes are one
of those
revolving
trends,
frequently
fluctuating in
and out of
style. Well,
stripes are
officially “in”
again, thanks
to ...



Fluctuating stripe nematic in a Mott insulator
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S. A. Kivelson, E. Fradkin and V. J. Emery, Nature 393, 550-553(11 June 1998)



“Snapshot of
a state with
“vestigial”
nematic
order
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Incommensurate CDW Order

O(2) x O(2) x Z5 symmetry

L. Nie, G. Tarjus, and SAK PNAS (2013)



Incommensurate CDW Order

O(2) x O(2) x Z5 symmetry

Commensurate SDW
e DT Wy (7T 4 HC|

65 = (1,0); G, =(0,7)  SO(3) x Z

Fang, Yao, Tsai, Hu, and Kivelson, PRB 77, 224509 (2008)
Xu, Muller, and Sachdev, PRB 78, 020501 (2008).



Incommensurate CDW Order

O(2) x O(2) x Zy symmetry
Commensurate SDW
S(7) = [\Ifx(F)e@x'F + W, (7T 4 H.C.] +..
G, = (r,0); §,=(0,m)  SO(3)x Zs
Incommensurate SDW
SO(3) x O(2) x O(2) x Z,



Incommensurate CDW Order

o(F) = p+ [ (A9 + b, (e +cc] +...

12 () + [92(5)
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Can promote v, from a

10502 () + 10,0, G| + S5 10,260 () + 10200, ()

2]+ 2 1o ) + e ()]

i+ D) (d) + ¥l (G + Dby (j) + c.c.]

U(1) to O(N) field

Exactly solvable in N — oo limit
Same solution provides good mean — field description for/N = 2

“Stripes” for v > 0; “checkerboards” for v < 0
L. Nie, G. Tarjus, and SAK PNAS (2013)
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Electron Nematic Phases

Traceless symmetric order parameter

Relation to spatial symmetries — makes it more like gravity
than like internal symmetries

Nematic as a (vestigial) composite order parameter
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€.q. Nab X §[€ab—|—€ba] — F €

€ — E €aa (Quadrapolar order)
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Ising nematic in a tetragonal crystal: N = €2z — €yy]




Electron Nematic Phases

Traceless symmetric order parameter

Relation to spatial symmetries — makes it more like gravity
than like internal symmetries

Nematic as a (vestigial) composite order parameter

Examples of “interesting” systems for which compelling evidence of
electron nematic phases has been discovered “recently:

Nematic Quantum Hall Metal and Nematic Quantized Hall Fluid

Field induced nematic phase in Sr;Ru,0,

Nematic phases in Fe-based superconductors, e.g. BaFe,  Co,As,

and various cuprate high temperature superconductors.

Quadrapolar Ordered phase of YbRu,Ge,
Colossal magneto-resistive Managanites — e.g. La, ,Ca,MnO..



Electron Nematic Phases

Traceless symmetric order parameter

Relation to spatial symmetries — makes it more like gravity
than like internal symmetries

Nematic as a (vestigial) composite order parameter

Examples of “interesting” systems for which compelling evidence of
electron nematic phases has been discovered “recently:

Nematic Quantum Hall Metal and Nematic Quantized Hall Fluid

Field induced nematic phase in Sr;Ru,0,

Nematic phases in Fe-based superconductors, e.g. BaFe,_ Co As,

and various cuprate high temperature superconductors.

Quadrapolar Ordered phase of YbRu,Ge,

Colossal magneto-resistive Managanites —e.g. La, ,Ca,MnO;,.
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Let’s take a quick look at the Fe-based superconductors:

BaFe, ,Co,As, studies by I.R. Fisher group

150‘
o9 9
B 2
w\
\ 2 »
507 spw §
o g ...)SC, i .
000 005 010 015 0.20
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and sometimes slightly before the magnetic transition.



It is possible to measure an “electron nematic” order parameter
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Resistive anisotropy in crystals of Fe-pnictide superconductor
J-H. Chu et al, Science 329, 824 (2010)



n= (pxx _ pyy>/(pxx+pyy)

. dn/de = nematic susceptibility
€ = stralnl = Ugy — Uyy

J.W. Chu et al, Science 337,710 (2012)
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Currie Weiss fit: — — =

J.W. Chu et al, Science 337,710 (2012)
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Currie Weiss fit :
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How generic is this
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How generic is this behavior?

J

H-H. Kuo, J-H. Chu, S.A. K., I.R. Fisher, arXiv:1503.00402
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Relation between nematic QCP and
optimal T_ in Fe-based SCs

* Nematic susceptibility is universally large in
neighborhood of optimal doping

* The extrapolated nematic critical
temperature, T*=T__, is universally well
below T_ for optimally doped materials.

* This is highly suggestive of a causal relation.



Electron Nematic Phases

Traceless symmetric order parameter

Relation to spatial symmetries — makes it more like gravity
than like internal symmetries

Nematic as a (vestigial) composite order parameter

Examples of “interesting” systems for which compelling evidence of
electron nematic phases has been discovered “recently:

Nematic Quantum Hall Metal and Nematic Quantized Hall Fluid

Field induced nematic phase in Sr;Ru,0,

Nematic phases in Fe-based superconductors, e.g. BaFe, Co As,
and various cuprate high temperature superconductors.

Hidden Order phase of URu,Si,

Colossal magneto-resistive Managanites —e.g. La, ,Ca,MnO;.



Effect of Quenched Randomness

The random field problem is relevant to problems
involving the breaking of pure spatial symmetries.



“Stripes,” i.e. incommensurate charge density wave (CDW)
order was discovered in one family of cuprate HTC
in 1994 by Tranquada et al. (also “bidirectional”)

Short-range CDW order is now widely
observed in hole-doped cuprates



Incommensurate CDW Order
p(F) = p + [La(FE'DT 445y (M@ 4 cc] + ..
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Effect of Quenched Randomness

Random Field problem in Statistical Mechanics

D=2 is lower critical dimension for Ising (Z,) model
(and presumably other models with discrete
broken symmetries)

D=4 is the lower critical dimension for Heisenberg ( SO(3) )
model and most models with continuous broken symmetries.

(There is the possible subtlety of a “Bragg glass” phase
for D=3 and XY ( SO(2) ) symmetry.)



Incommensurate Stripe Order
T

Assume a stripe-ordered ground-state and V, << J

0

L. Nie, G. Tarjus, and SAK (2013)
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“Vestigial” Nematic Order

Stripe

Assume a stripe-ordered ground-state and V, << J

0

L. Nie, G. Tarjus, and SAK (2013)
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“Vestigial” Nematic Order

T
TIlCIIl
T In d > 2, Ising (discrete) symmetry breaking survives

Str in the presence of weak enough random fields!
O In d £ 4, no continuous symmetry breaking possible
3= in the presence of random fields!
N
op)

Consider the effects of quenched disorder

0

L. Nie, G. Tarjus, and SAK (2013)
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“Vestigia

Stripe

0

L. Nie, G. Tarjus, and SAK (2013)

Nematic Order

Homogeneous
and
Isotropic



Checkerboard

For Checkerboard Order

For any form of incommensurate CDW,
the translation symmetry breaking
is short-range correlated, and looks
rather similar whether we are dealing
with stripes or checkerboards.

The only fundamental distinctions
involve Q=0 order (or, more weakly, commensurate order)
—i.e. time-reversal and/or
point-group symmetry breaking.

Still remain interesting sharp
crossover near T g,
for o small.

L. Nie, G. Tarjus, and SAK (2013)



Visualizing vestigial nematicity when a
unidirectional (stripe) ordered CDW is
disrupted by quenched randomness

Courtesy Jenny Hoffman
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A few things that are particularly
interesting about electron nematic order

Nematic QCP is possible even in the presence of quenched disorder

Nematic fluctuations enhance superconductivity in any channel.

Quantum critical nematic fluctuations destroy FL on entire FS.

and, absent crystal field effects, in the entire nematic phase

S. Lederer, Y.Schattner, E. Berg, and SAK, arXiv:1406.1193
T. A. Maier and D. J. Scalapino, arXiv:1405.5238

V. Oganesyan, SAK, and E. Fradkin, PRB 64, 195109 (2001)

H. Watanabe and A. Vishwanath, PNAS accepted.



