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Isacks, Oliver, Sykes
(JGR 1968)

César R. Ranero (ICREA at CSIC, Barcelona)

Ingo Grevemeyer, Jason Morgan, Valenti Sallares, Roland von Huene

-.*ICREA

Colloque: 50 years of Plate Tectonics: Then, Now, Beyond. Paris 25-26 June 2018



Subducted slabs beneath the eastern Indonesia—Tonga region: insights from tomography
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Recycling at subduction zones:

INPUTS:
Volume, structure, composition/fluid content

Pelagic and Detrital Sediment —
Accretion/Tectonic erosion (V, S, C/F) 1

Oceanic crust (S, C/F) 1

Oceanic mantle (S, C/F) 1




Regions of concentrated d

eformation and exchange of materials, fluids and volatiles
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Three major topics for the 21st century

¢ Earthquakes and Slow Slip Phenomena at the mega-thrust interplate faulit.
¢ Fluids across the forearc, and their (speculative) relation to deformation.
¢ The incoming plates of subduction zones.

¢ What do to next to advance?
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EQ. recurrence &
seismic gaps
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The complex mechanical behaviour of faults

Slip on fault during 2004 Sumatra Mw9.2 EQ Slip on fault during 2011 Tohoku-Oki Mw9 EQ
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Broken Paradigms

“Almost all the recent EQ have violated some theories of where and when great
earthquakes can occur and what their consequences can be.” (Lay, Nature 2012).

Outdated conceptual models of where Giant EQ may occur

Young plates & Fast convergence 2004 Andaman Mw9.2 slow convergence
(Ruff & Kanamori 1980)

Voluminous sediment in the trench 2011 Tohoku-Oki Mw9.0 sediment starved
(Ruff, 1984)
Predict Max. EQ-Mw & recurrence time 2011 Tohoku-Oki Mw9.0 millennia-scale recurrence

(Nishenko, USGS-report 1984).
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Slow Slip Phenomena

LFE (red), VLF (orange), and SSE (green) occur in
the Nankai trough while ETS (light blue) occur in the
Cascadia subduction zone. These follow a scaling
relation of MO «t, for slow earthquakes. Purple circles
are silent earthquakes. Black symbols are slow
events listed in the bottom half of Table 1. a, Slow slip
in Italy23,24, representing a typical event (circle) and
proposed scaling (line). b, VLF earthquakes in the
accretionary prism of the Nankai trough26. c, Slow
slip and creep in the San Andreas Fault21,22. d, Slow
slip beneath Kilauea volcano?25. e, Afterslip of the
1992 Sanriku earthquake27. Typical scaling relation
for shallow interplate earthquakes is also shown by a
thick blue line.

Ide et al., (Nature 2007)
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Slow Slip Phenomena

(a) the Japan view

long-term SSE ~ hydrated
mantie wedge

Obara, 2011; Kato et al., 2010
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Mega-thrust fault and upper plate sampling. characterisation and monitoring

»

Japan Chikyu Riser Ship-

T,

S CRISP-Riser
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2015, EPSL 2016
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Understanding EQ nucleation, rupture propagation and arrest

Mega-thrust frictional environment: Fault mechanics

3D modelling of
deformation
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Understanding EQ nucleation, rupture propagation, and arrest will require 4D observations

WATCHING THE EARTH MOVE

Ships are used as intermediaries to measure sea-floor deformation, which reveals where the plate is locked
— stuck along faults.

3-5km

30 - 50 km

))))Rﬁ Barcelona CSI Newman, (Nature 2011)

Center for Subsurface Imaging
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Side-scan sonar imagery
draped over bathymetry

% Barcelona CSI o | Seepae at the seaflor

Center for Subsurface Imaging
for Subsurface Imaging Ranero et al., (G-cubed, 2008) 16




Fluids & deformation
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R. Stern, Subduction Zones,
Review of Geophysics, 2002

“Review aimed at:

1) Advanced undergraduate or
beginning graduate student.

2) Professional not specialised
in subduction zones “
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World Convergent Margins
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Accretionary prism structure is well displayed in seismic images

von Huene et al., Tectonics 1998

Re-processed and Pre-Stack Depth Migrated Shell P7 offshore Bali, shotin 1973 !

’)))R[} SArCPIana. S Ranero, Unpublished
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The hydrogeological system of accretionary prisms

“On most prisms, fluid vents are thought to cover < 1% of the total surface area and although flow rates from active vents are
high (105-101° mml/yr), their contribution to estimates of total discharge (dispersed plus focused, Table 3) is not apparent.”
(Carson and Screaton, Rev. Geophys. 1998)

”)) N B dda e Conventional Wisdom in early 2000s:

The hydrogeological system of accretionary prisms is largely controlled by decollement and matrix permeability.



Tectonic erosion at subduction zones

i

Ranero and von Huene (Nature 2000)



Conceptual Model for Erosional Plate Boundaries
SUBSIDING

+ Slope sediment
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Seepage at

the seafloor
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Simrad EM120
bathymetry

Seepage at the seafloor
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Seepage at the seafloor

Buried mound
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What kind of fluids discharge at seeps?

)



Low CI indicates fresh water discharging at seafloor seeps
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Pore water chemistry from seeps and origin of fluids

)}}}}} wrcelona C: Hensen et al. (Geology 2004)
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Temperature along the plate boundar
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Modelled flow rates at slope vents based on heat flux measurements
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Average fluxes of dehydration water under the forearc

* Input: minere vood, 2004)
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The forearc fluid and material exchange between lithosphere and hydrosphere

a\

?»)J) Barcelor : Ranero et al., G-cubed 2008
Center for Subsu %
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Correlation between locked patches and fluid-poor fault segments
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3. The Incoming plate of subduction zones

Continental Slope

Chilé Trench Axis’

'S0104-D7(Fig. 4a)
$0104-09 (Fig. 4b)
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SEISMOLOGY AND NEW GLOBAL TECTONICS
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Fig. 7b.

Figure 7 shows vertical sections through an island arc indicating hypothetical structures and
other features. Both sections show down-going slab of lithosphere, seismic zone near surface
of slab and in adjacent crust, tensional features beneath ocean deep where slab bends abruptly
and surface is free. (In both sections, S indicates seismic activity.) (a) A gap in mantle portion
of lithosphere beneath island arc and circulation in mantle associated with crustal material of
the slab and with adjoining mantle [Holmes, 1965]. (b) The overriding lithosphere in contact
with the down-going slab and bent upward as a result of overthrusting. The relation of the
bending to the volcanoes follows Gunn [1947]. No vertical exaggeration.

Isacks, Oliver & Sykes,

(JGR 1968)
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Andesitic Middle Crust
(Continental Crust Formation) o
\ Volcanic Arc

Fluid Fluxes

Serpentine
A Diapir Accretionary
Prism

Figure 35. Cross section of a subduction zone, extending
from the trench to the remnant arc and including crust,
mantle wedge and the subducting plate descending to about
200 km. The incoming oceanic lithosphere contributes al-
teration products, volatiles and overlying sediments. The
subducting plate descends beneath the back arc on its way
to the deep mande. Fluids and melts move through the
upper plate (blue arrows). The impact of fluid-driven or
fluid-mediated processes in global cycles and in crucial pro-
cesses in the subduction zone are noted. Figure courtesy

Foundering of Chemically
Modified Slab of Yoshiyuki Tatsumi, Kyoto University.

M Barcelona cs: US-Margins 2000-2010 White Book



Are the lower planes of double seismic zones caused by serpentine dehydration in subducting oceanic mantle?

”))3%
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Peacock (Geology 2001)
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Figure 2. A: Geotectonic map of northeast Japan depicting plate boundaries, location of
thermal model, and focal mechanisms for selected outer rise earthquakes (Kanamori, 1971;
Seno and Gonzalez, 1987; Engdahl et al., 1998). Solid triangles —Holocene volcanoes; M, —
moment magnitude; z—depth below seafloor. B: Cross section through northeast Japan

(- 39°N) showing earthquake hypocenters (Hasegawa et al., 1994) and calculated thermal
structure. Isotherm contour interval = 100 °C.
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Facts about peridotite serpentinization

1m? 0.48 m®
Peridotite | + |H,0| - [
1 MgSiO, e
1Ma,Si0, & <0 Mg ;Si,0,(OH),
130/0 H 20
by weight

> Only occurs below ~500-600°C

> Water uptake up to 13wt.% for complete transformation

> Latent heat of complete transformation is ~300°C (Exothermic !!)
> Vp decrease from 8 km/s to 4.5 km/s

> Density decrease from 3.3 Mg/m3 to ~2.3 Mg/m3 (~40%)

> i 1 diffusi i
»))Rﬁ Barcelona CS| Geologically fast! diffusion speed is upto 1 km/1 m.y.



Serpentine (Antigorite) Stability Phase Diagram
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» at P corresponding to depths > ~200km:
Serpentine transforms to hydrous Phase
A without dehydration but increase in
density.

* at higher P or depths > ~60km, de-
serpentinization occurs with increase in
either Por T.

» at low P: de-serpentinization occurs with
increasein T.
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Serpentinite Seduction, Science, Nov 2002

Kerrick (2002): “Seductive” but extremely unlikely.
Clearly a hydraulic impossibility to get water to such great depths...

“The hypothesis that surface water is Peridotite

drawn to such a depths [double
seismic zones] by dilatancy arising
from seismic pumping associated with
deep earthquakes is difficult to
reconcile with hydraulics.”

«C
ﬂﬂﬂﬂﬂﬂ

“Propagation of cracks and fractures
necessary for fluid ingress would be
inhibited by the large increase in
rock volume accompanying
serpentinization.”

Peridotite

») Barcelona CSI
Center for Subsurface Imaging 46
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Pervasive bend-faulting: The mechanism
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Anomalously-low crust and mantle velocities offshore Chile

\‘\

90 80 70 60 50 40 30 20
Distance (km) o ———TT T
18 23 385 43 %85 65 713 80
. Velocity (kmv/s)
Ranero & Sallares
(Geology, 2004) 4 5 6 7 8 [kms]
0 - I i N

depth [km]

x®
L

10 Exﬂnaktﬁ .
»)))} Barcelona CSI Pacific Plate > 15Ma

Center for Subsurface Imaging

B\

N

2

Ot gt

+

)
.




Heat flux at the trench axis a) Heat flow anomaly
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Wide — Angle Seismic Studies of trenches (2004-2015)

e s e

5 WAS lines

P and S waves
One 3D study
P and S wave

&

e 7 WAS lines
e PandS wave

All modern seismic studies of incoming plates at trenches found low mantle velocities:
’»(»} Barcelona Eu?n! Exception: Cascadia -> Plate young and hot (~450°C at Moho)




Velocity [km/s]
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Compilation of Vp perpendicular to trench axis

a) Mantle velocity

b) Lower crustal velocity
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a) P-wave velocity model

w E

NIC-20 wide-angle seismic profile off Nicaragua

0 10 20 30 40 S50 60 70 80 90 100 110 120 130

A58
11°00°
1030 16 1] A 1] A 1 y 1 b4 1 1] A 1] 4 L) o 1 v L L] B L 14 1
b) S-wave velocity model
U -
10°00°
4 - =
s 8 -
°30° %
8800 (o]
12 -
Grevemeyer, Ranero, Ilvandich (2018) 10 1518 22 3.0 39 4.8
16 . T et L] d 1 = 1 - al . T - L] o L - 1 b T b L] . L) v 1

Center for Subsurface Imaging Distance [km]

0 10 20 30 40 50 60 70 80 20 100 110 120 130
)))))ﬁ Barcelona CSI



NIC-20 offshore Nicaragua
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e serpentinized mantle
® dry mantle
® Lab samples

4

Lab. studies show that
serpentines have high
Vp/Vs ratios compared to
dry peridotite:

A Vp/Vs ratio of >1.8
supports serpentinization
of the mantle of the
Nicaragua trench.

Grevemeyer, Ranero, Ivandich (2018)
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How much water is carried in slabs?

The conventional model:

depth (km)

cE888,
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Water content in oceanic plates at trenches

Bound water
Thickness (m3 H,0/ m?)

sediment 0.4 km 90

Upper crust

Lower crust

Mantle /
15% serpentine

Barcelona CSI
Center for Subsurface Imaging

The chemically bound water in a
15 km-high mantle column
containing 15% serpentine

is equivalent to a

~0.9 km-thick column of water.

57



The complex structure of incoming plates and down-going slabs

,)) Barcelona CSI
/ Center for Subsurface Imaging

Ranero et al., G-cubed 2005
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Fault-induced seismic anisotropy by hydration in subducting oceanic plates| Deep slab hydration induced by bending-related variationsin tectonic pressure

Manuele Faccendal, Luigi Burlini2, Taras V. Geryal & David Mainprice3 Manuele Faccendalx, Taras V. Geryal and Luigi Burlini2
(Nature, 2008) (Nature Geos. 2009)
Distance (m)

1600 1650 1700 L750 1800

Depth (km)

Depth (hm)

Figure 3 | Schematic diagram of the tectonic and compositional structure
of the slab and the inferred splitting behaviour. Vsl and Vs2 are the fast and
slow, orthogonally polarized, shear waves, respectively. The polarization of
Vsl aligns parallel to the strike of the fault set. The colour scheme of the slab
is as in Fig. 2a, b.
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Seismic evidence of negligible water carried below 400-km depth in subducting lithosphere
Harry W. Green 111, Wang-Ping Chen2 & Michael R. Brudzinski3

(Nature, 2010)
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Figure 1 | Schematic summarizing key points presented in this study.

a, Salient features of subduction zones and overall structures of the upper
mantle and the mantle transition zone, with key seismic observations and their
likely causes. The most prominent example of defiected and detached stabs is
under the back-ire region of the Tonga - Kermades subduction zone”, whereas
the slab along the steeply dipping Mariana subduction zone seems (o penetrate
into the lower mantle”™, Globally, not a single carthquake has been recorded
below a depth of about 680 km. b, Salient features of a continental collision
zone, such as the Himalaya-Tibet collision zone, where Rayleigh-Taylor
inatability causes thickened subcontinental mantle lithosphere to founder.
Refore collision, the subcontinental mantle lithosphere was hydrated as part of

the mantle wedge along an Andean-type continental margin®™, ¢, Globally
averaged number of earthquakes (body-wave magnitude, =5) per year asa
function of depth. Notice that the horizontal scale is logarithmic. d, Summary of
stability of various hydrous phases, emphasizing the effect of depth (or,
equivalently, pressure), There is a sequence of dehydration reactions that can
account for the concentration of seismicity above depths of about 350 km. In
contrast, there is no corresponding dehydration for the concentration of
selsmicity at greater depths. Moreover, there is no selsmicity associated with
expected dehydrtion of nominally anhvdrous olivine polymorphs and dense
hydrous magnesium silicates at greater depths.
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Seismic constraints on the water flux delivered to the deep Earth by subduction
Savage (Geology 2012)

Large quantities of water penetrate to > 600 km
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Figure 1. A: Data from
deep earthquake (634
km) displayed as lower

recorded at Tonga (black
triangles) and Fiji (red
triangles) secismic sta-
tions. Left insel shows
general location of Tonga
and Fiji. Right inset is

presence of large offset
trench-parallel faulls. B:
Initial  Iimpulsive arriv.
als are compressional P
waves followed by shear
or § waves, seen in data
from Fiji (red seismo-
gram). Unexpected ar-
rival is visible in Tonga
data (black selsmogram)
with extended duration
and large amplitude.
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Figure 2. Simplified compressional wave speed model of Tonga-Fiji subduction zone. Sub-
ducting plate, dipping to left, is higher wave speed than background mantle model and in-
cludes undulating serpentine layer on top of plate. Lower right inset shows plate (blue box)
and serpentine layer (green triangles). Comparison between data (top) and synthetic seis-
mograms (middle, bottom) demonstrates that addition of a serpentine layer to top of plate
Improves fit between data and synthetics, Synthetic earthquake source is located at white
star, and seismic station is at inverted triangle (black, at top). White arrows show determined
mantie water fluxes Into Earth (2.0 x 10° Tg/Ma), expeiled due to serpentine conversion to
phase A (1.5 x 10* Tg/Ma) and carried to deeper depths by subducting lithospheric mantie
(0.5 x 10" Tg/Ma).
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nature
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Seawater cycled throughout Earth's mantle in
partially serpentinized lithosphere

M. A. Kendrick'™, C. Hémond?, V. S. Kamenetsky?, L. Danyushevsky?, C. W. Devey?, T. Rodemann®,

M. G. Jackson® and M. R. Perfit’

The extent to which water and halogens in Earth's mantle have primordial origins, or are dominated by seawater-derived
components introduced by subduction is debated. About 90% of non-radiogenic xenon in the Earth's mantle has a subducted
atmospheric origin, but the degree to which atmospheric gases and other seawater components are coupled during subduction
is unclear. Here we present the concentrations of water and halogens in samples of magmatic glasses collected from mid-
ocean ridges and ocean islands globally. We show that water and halogen enrichment is unexpectedly associated with trace
element signatures characteristic of dehydrated oceanic crust, and that the most incompatible halogens have relatively uniform
abundance ratios that are different from primitive mantle values. Taken together, these results imply that Earth’s mantle is
highly processed and that most of its water and halogens were introduced by the subduction of serpentinized lithospheric

mantle associated with dehydrated oceanic crust.

uantifying the global cycles of volatile elements into and out
of the mantle is critical for modelling planetary evolution' ",
Trace elements and radiogenic isotopes provide important
nformation about mantle heterogeneity, with many features of
ocean island basalts (OIBs) commonly attributed to the presence of
recycled subducted ocean crust (the HIMU endmember) or sedi-
ment (EM endmembers) in their mantle sources™ ™ (Fig. 1). Melts
sampling EM (enriched mantle) reservoirs are known to be depleted
in H,0 and ClI relative to lithophile elements of similar mantle in-
compatibility, consistent with the presence of dehydrated sediment
or continental crustal material in EM sources™*'"" "', However, the
volatile content of HIMU (high-jt, meaning high U/Pb) reservoirs
and the relative proportions of recycled versus primordial water in
the mantle remain poorly constrained™*'" ",
The current study combines new and published F, Cl, Br, | and
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Growing Evidence of larger-scale transformation of incoming plates

Intense deformation of the lithosphere is NOT constrained
to ONLY the TRENCH but occurs in a much broader region

extending across the entire OUTER RISE.
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Petit Spot : Major transformations?
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Figure 3 | Schematic model illustrating the metasomatism of the oceanic lithospheric mantle associated to plate flexure, Extension ol the base of the
lithosphere created by plate flexure allows low-degree medts present at the top ofthe asthenosphere to percolate into the ithospheric mantle (1), The

percolation and differentiation of these melts produce various (an-) hydrous motasomatic vemns and/or cumulates as a function of pressure and

temperature, and cryptic melasomatiem n oceanic kthosphere (1111, In some cases, the reacting low-degree melts could reach the surface and generate

the petit-spot sills and lavas (IV), Recyeling and storage of oceanic lithosphere into the convecting mantle containing incompatible element-anriched
metasomatized domains could praduce some of the isotopically ennched companents observed in the source of MORBS or OJBs (V).

Hirano et al., (Science 2008)
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Pilet et al., (Nature Geos. 2016)
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Significance

Mid Ocean Ridge Systems: Incoming Plate at Subduction Trenches:

e ~60,000 km long system. e ~55000 km long system.

e  30-40 km width of active e  300-400 km width of the active deformation,
deformation and magmatism. serpentinization & metasomatism.

e 0.5-2m.y. of active deformation. 1 -4 m.y. of active deformation.

«  Max. depth of intense deformation Max. depth of intense deformation and
and exchange between hydrosphere geochemical exchange between hydrosphere
and lithosphere reaches to ~10 km. and lithosphere may reach ~15-30 km.

Incoming Plates are a new class of geodynamic setting

)



4. What do to next to advance?

Why plate tectonics crystallised in the 1960s?

New Observations from New Technologies (after WWII):
e Magnetometers -> Seafloor spreading magnetic lineations
e Seafloor maps -> Mid Ocean Ridges and Trenches

e Worldwide seismological network -> Slabs in the mantle
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1950 '[O 60’ S Marle Tharp maps prowded a Key Observatlon The MOR system
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What do we need to do to image subduction zones?

NEXT
GENERATION
GEOPHYSICS



Three-dimensional elastic wave speedsin the northern Chile subduction zone: variationsin hydration in the supraslab mantle

Diana Comte, 1.2 Daniel Carrizo,2:3 Steven Roecker,# Francisco Ortega-Culaciati1 and Sophie Peyrat®
Geophys. J. Int. (2016)
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The Seismic Structure and Dynamics of the M antlgvxaedge
DouglasA. Wiens, JamesA. Conder, and Ulrich H. Faul " — .
Annu. Rev. Earth Planet. Sci. 2008 '

Figure 2

P-wave (), S-wave (#), and @, () romographic models for the “Tonga-Lau subduction zor
backare basin from an ocean-bottom seismograph deployment. The P-wave and S-wave
models are from Conder & Wiens (2006) and are given as velocity anomalies relative o
IASPEI9! veloairy model (Kennetr & Engdahl 1991). The @, structure was determined
reinverting the attenuation measurements of Roth er al, (1999) using ray paths caleulate
the above velocity model. The solutions are masked where the structures cannot be adeg

resolved. Circles denote carthquake hypocenter locations, CLSC denotes the position of
Central Lau Spreading Center.
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Imaging the source region of Cascadia tremor and intermediate-depth earthquakes
Geoffrey A. Abersl* Laura S. MacKenzie2, Stéphane Rondenay3, Zhu Zhang4, Aaron G. Wechd, and Kenneth C. Creagerd
(Geology, 2009)

n
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':) *g@ ®e TA
< y 4 ¢ PNSN
‘Q:‘\ A Volcano

« Tremor

Figure 1, Broadband seismic stations used in this study (blue), tremor (red dots), and con-
tours to slab seismicity (yellow). Stations symbols are dark biue if used in migration image
or light blue if only used to estimate incident wavefield and for earthquake location. Symbol
shape indicates network (legend): CAFE—Cascadia Arrays for Earthscope; TA—Earthscope
Transportable Array; PNSN—Pacific Northwest Seismic Network, Tremors (dots) from 2004,
2005, 2007, and 2008 sequences located by automated detection technique (Wech and Crea-
ger, 2008), Contours show depth to Juan de Fuca slab at 20 km intervals (McCrory et al., 2004).
Dark lines denote cross-section projection region (Fig. 2). Stars show epicenters of three
largest (M > 6.5) recorded intraslab earthquakes, in 1949, 1985, and 2001(Data Repository,
Section C; see footnote 1). Inset, lower left, shows earthquakes used in migration (diamonds),

Barcelona CSI
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Figure 2. Migration images for central Washington, with seismicity and tremor. Transect lo-
cation shown on Figure 1; horizontal distance of 0 km corresponds 1o coaslline. A: Histo-
gram of number of tremors shown In Figure 1 between section lines, in bins 5 km wide. B:
S-wave velocity variations dVs/Vs, from migration, Green circles: earthquakes >20 km deop
and between 47°N and 48°N latitude, occurring during CAFE and relocated using same ve-
locity model as migration. Yellow circles: select events from local catalog (McCrory et al.,
2004). Red triangle: Mt. Rainier volcano. Stars: three largest (M > 6.5) recorded earthquakes:
at waveform-derived depths. C: Same as B, but for P-wave velocity variations dVp/Vp.
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Pervasive Seismic Wave Reflectivity and M etasomatism of the Tonga M antle Wedge

Yingcai Zheng,1 Thorne Lay,1* Megan P. Flanagan,2 Quentin Williamsl

(Science 2007)
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Fig. 1. Schematic of the Tongs mantle wedge imaging grometry. Deep-focus earthquakes within the|
subducted Pacific plate in the Tonga subduction one radiate wp-going erergy that refiects from the
wnderside of Earth’s surface (p# ov the underdide of velodity contrasts at depth & above the sources (p
and then travels 1o televeiumic dnlunces. The p @ arrivals are precutsons (o the surface reflections. Thed
et shows ray paths for o and pP 20 2 teleselsmic dhvtance of 80°. Data from stations in the ranged
from 40" 10 140" were used for imaging the wedge. An example of a vertical-component sefimogram fsd
shown 0n the Sower right, with energy between £ and pf mainly Cauted by underside reflections, whichy
Mrhve as precursers to pP, EQ, earthquake, PoP, downe-gokng P wave that reflacted from the (ore-mantie

boundary,
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Fig. 4. Vertical west-
east profiles in the (A
and B) P-wave migra-
tion volume and (€ and
D) the SH-wave migra-
tion volume along pro-
files A to A" (Fig. 2) at
18°5 [(A) and (Q) and
B to B' at 21°S [(B) and
(D). The periad of the
Ricker wavelet applied
to the data is 16 s for P
and 20 s for SH. Color
scales correspond to
those in Fig, 3. The
strong blue and red
stripes near the surface
are the images of the
pP and sSH surface
reflections. The upper
surface of the subduct-
ing Pacific plate is indi-
cated by the gray

{ o S
Lat (deg)™“"-25 175

19 :
Lot andl 23 22

facade, The deep-focus earthquake hypocenters are shown by green dots. The intermittence in the reflectors may be due to non-uniform ray path sampling.
In many instances, the reflectors extend to the westward edge of our field of illumination,




State of the art geophysics for 3D higher-resolution physical properties determination
Pre-Stack Depth Migration

* Pre-stack Depth migration of Seismic reflection data (relatively short offsets)
* Excellent definition of boundaries and geometry (e.g. RTM)

e Limitations to determine physical properties > need velocity model building (TTT)

¢ Travel Time Tomography (Inversion) using arrival time of refracted + reflected
phases.

¢ Ray theory > Resolution ~(Ad)1/2 =103 m

* Moderately non-linear > robust; moderate computational cost; limited resolution.

* Full waveform inversion (phases and amplitudes) > Advantages TTT & PSDM.
* Wave equation > Resolution ~A/2 = 101-102 m (similar to MCS+PSDM).

e Strong non-linearity > Initial model, low freq, noise, source, computational cost.
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State of the art geophysics for 3D higher-resolution physical properties determination

Full azimuth 3D data
Raypath geometry for one node/receiver gather:

omond jlela, NO a

Conventional imaging Multiple path imaging
Primary reflections, up-going wavefield Receiver side multiple, down-going wavefie
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Three major topics of subduction zones for the 21st century

¢ Earthquakes and Slow Slip Phenomena at the mega-thrust interplate fault.
¢ Fluids and their relation to deformation.
¢ The incoming plates and slab structure.

¢ New technologies (instruments and algorithms)
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End presentation

Thank You!
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