LMU	LUDWIG- MAXIMILIANS- UNIVERSITÄT MÜNCHEN

ro Th 000 Twin E>

GEMS 000000 etrodictions

Summary

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Retrodictions of late Paleogene Mantle Flow

Hans-Peter Bunge

Ludwig-Maximilians University (LMU) München

L. Colli, S. Ghelichkhan, J. Oeser, M. Mohr, B. Schuberth, L. Vynnytska, A. Horbach, A. Friedrich, R. Pail

(LRZ, SAMPLE-SPP, TOPO-AFRICA)

Collège de France December 1st, 2016

LUDWIG- MAXIMILIANS-	Int	ro T	heory	Twin Experiments	GEMS	Retrodictions	Summary
MÜNCHEN	000	0000 0	0000	0000 00000000 0000	0000000	00000000 0 000	00

OUTLINE

- Introduction (forward models, dynamic topography)
- Theory (equations, twin experiments on convergence, boundary conditions)
- Simple Geodynamic Earth Models (model initialisation and uniqueness)
- Retrodictions (sensitivity to model parameters and tomographic input model)
- Conclusions (retrodictions are an powerful tool to learn about past Earth dynamics)

- Achievements
 - many of them
 - high resolution
 - comp. efficient
 - scenario simulations
- Frontiers
 - forward vs. inverse
 - link to observation
 - explicit histories

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

(Zurich group)

- Achievements
 - many of them
 - high resolution
 - comp. efficient
 - scenario simulations
- Frontiers
 - forward vs. inverse
 - link to observation
 - explicit histories

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● の Q @

(Boulder group)

- Achievements
 - many of them
 - high resolution
 - comp. efficient
 - scenario simulations
- Frontiers
 - forward vs. inverse
 - link to observation
 - explicit histories

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● の Q @

- Achievements
 - many of them
 - high resolution (10⁹ grid points)
 - comp. efficient
 - scenario simulations
- Frontiers
 - forward vs. inverse
 - link to observation
 - explicit histories

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

- Achievements
 - many of them
 - high resolution
 - comp. efficient
 - scenario simulations
- Frontiers
 - forward vs. inverse
 - link to observation
 - explicit histories

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● の Q @

- Achievements
 - many of them
 - high resolution
 - comp. efficient
 - scenario simulations
- Frontiers
 - forward vs. inverse
 - link to observation
 - explicit histories

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● の Q @

- Achievements
 - many of them
 - high resolution
 - comp. efficient
 - scenario simulations
- Frontiers
 - forward vs. inverse
 - link to observation
 - explicit histories

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● の Q @

- Achievements
 - many of them
 - high resolution
 - comp. efficient
 - scenario simulations
- Frontiers
 - forward vs. inverse
 - link to observation
 - explicit histories

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● の Q @

- Achievements
 - many of them
 - high resolution
 - comp. efficient
 - scenario simulations
- Frontiers
 - forward vs. inverse
 - link to observation
 - explicit histories

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● の Q @

paleo shorelines

5 Myr:

・ロト ・ 同ト ・ ヨト ・ ヨト - ヨ

paleo shorelines

10 Myr:

paleo shorelines

20 Myr:

paleo shorelines

30 Myr:

paleo shorelines

45 Myr:

paleo shorelines

60 Myr:

paleo shorelines

70 Myr:

◆□▶ ◆圖▶ ◆恵▶ ◆恵▶ 三臣

paleo shorelines

80 Myr:

◆□▶ ◆圖▶ ◆恵▶ ◆恵▶ 三臣

paleo shorelines

90 Myr:

◆□▶ ◆圖▶ ◆恵▶ ◆恵▶ 三臣

LMU	LUDWIG- MAXIMILIANS- UNIVERSITÄT MÜNCHEN	Intro ○ ○●○○○	Theory 00 0000	Twin Experiments 0000 00000000	GEMS 0000000	Retrodictions 00000000 0	Summary 00
				0000		000	

Africas Elevation History

• **Topo Africa**: French sister program of the German **DFG SAMPLE SPP** to study the topographic evolution of Africa.

Burke & Gunnell. (2008)

◆ロト ◆聞ト ◆居ト ◆居ト 三臣

LMU	LUDWIG- MAXIMILIANS- UNIVERSITÄT MÜNCHEN	Intro 0	Theory 00	Twin Experiments	GEMS 0000000	Retrodictions 00000000	Summary 00	
				0000		000		

Gravity and Dynamic Topography

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Colli et al. (2016)

LUDWIG- MAXIMILIANS-	Inti	ro Th	eory T	win Experiments	GEMS	Retrodictions	Summary
MÜNCHEN	000		00 0	000 0000000	0000000	00000000	00
			0	000		000	

Response Kernels of Dynamic Earth Models

LMU	LUDWIG- MAXIMILIANS- UNIVERSITÄT MÜNCHEN	Intro ○ ○○○○●	Theory 00 0000	Twin Experiments 0000 00000000	GEMS 0000000	Retrodictions 00000000 0	Summary 00
۸dr	aittan		Vaval	0000 000+b		000	

Admittance vs. Wavelength

Colli et al. (2016)

LMU	LUDWIG- MAXIMILIANS- UNIVERSITÄT MÜNCHEN	Intro 0 0000	Theory •0 •0 •0	Twin Experiments 0000 00000000	GEMS 0000000	Retrodictions 00000000 0	Summary 00
				0000		000	

The inverse approach to geodynamic flow modeling

(日) (日) (日) (日) (日) (日) (日)

Initial state estimates from which one may start a model

a) Run convection models for a long time (with surface velocities given by known plate motion histories), i.e. longer than one mantle overturn, ≈ 150 Ma.

b) run convection backward in time (e.g., Moucha et al., Steinberger et al.)

 \Rightarrow c) pose fluid dynamic inverse problem based on history matching

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

The Adjoint equations of mantle convection

Mathematical procedures (chain rule, partial integration, adjoint operators) lead to the adjoint equations:

$$\partial_{t}\Psi + \mathbf{v} \cdot \nabla\Psi + k\nabla^{2}\Psi + \alpha\rho_{0}\mathbf{g} \cdot \phi = \partial_{T}\hat{\chi}(T)$$
$$\nabla \cdot \eta \left(\nabla\phi + (\nabla\phi)^{T}\right) + \Psi\nabla T = 0$$
$$\nabla \cdot \phi = 0$$

The scalar field Ψ is the so called *adjoint temperature*. It has to satisfy the above equations and provides sensitivity information about the initial state.

The Adjoint equations of mantle convection

Mathematical procedures (chain rule, partial integration, adjoint operators) lead to the adjoint equations:

$$\partial_t \Psi + \mathbf{v} \cdot \nabla \Psi + k \nabla^2 \Psi + \alpha \rho_0 \mathbf{g} \cdot \phi = \partial_T \hat{\chi}(T)$$
$$\nabla \cdot \eta \left(\nabla \phi + (\nabla \phi)^T \right) + \Psi \nabla T = 0$$
$$\nabla \cdot \phi = 0$$

The scalar field Ψ is the so called *adjoint temperature*. It has to satisfy the above equations and provides sensitivity information about the initial state.

LMU	LUDWIG- MAXIMILIANS- UNIVERSITÄT MÜNCHEN	Intro O OOOOO	Theory ○○ ○●○○	Twin Experiments 0000 0000000	GEMS 0000000	Retrodictions 00000000 0	Summary 00
				0000		000	
T 1	A 11 1		1.1	C 11		1.1	

The Adjoint equations of mantle convection

We solve the *adjoint* equations in global mantle flow models

- terminal condition on temperature
- adjoint diffusion operator stable vs. time-reversal
- iterative procedure: computationally expensive, but is beginning to become feasible in 3D

\Rightarrow optimise for suitable flow histories (backwards in time)

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

The (variational) adjoint approach to data assimilation

By iteratively adjusting the initial condition, one corrects the model trajectory over the whole time window, providing an *optimal* fit to the observational (here terminal condition) constraints.

Dashed line corresponds to initial (unconstrained) guess of the model trajectory.

(From **Fournier et al. 2012** with an application to dynamo models. Similiar approaches are used in meteorology, oceanography, glacier dynamics, hydrology.)

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

The compressible adjoint equations of mantle convection

Mathematical procedures (chain rule, partial integration, adjoint operators) lead to the *compressible* adjoint equations:

$$\partial_t \Psi + \mathbf{v} \cdot \nabla \Psi - (\gamma - 1) \Psi \nabla \cdot \mathbf{v} + k \nabla^2 \Psi + \alpha \rho_0 \mathbf{g} \cdot \phi = \partial_T \hat{\chi}(T)$$

$$\nabla \cdot \eta \left(\nabla \phi + (\nabla \phi)^T \right) + \Psi \nabla T = 0$$

$$\nabla \cdot \phi = 0$$

The scalar field Ψ is the so called adjoint temperature. It has to satisfy the above equations and provides sensitivity information about the initial state. (from Ghelichkhan & Bunge, 2016)

▲□ → ▲□ → ▲□ → ▲□ → ● ● ● ● ●

The compressible adjoint equations of mantle convection

Mathematical procedures (chain rule, partial integration, adjoint operators) lead to the *compressible* adjoint equations:

$$\partial_{t}\Psi + \mathbf{v} \cdot \nabla\Psi - (\gamma - 1)\Psi\nabla \cdot \mathbf{v} + k\nabla^{2}\Psi + \alpha\rho_{0}g \cdot \phi = \partial_{T}\hat{\chi}(T)$$
$$\nabla \cdot \eta \left(\nabla\phi + (\nabla\phi)^{T}\right) + \Psi\nabla T = 0$$
$$\nabla \cdot \phi = 0$$

The scalar field Ψ is the so called adjoint temperature. It has to satisfy the above equations and provides sensitivity information about the initial state. (from Ghelichkhan & Bunge, 2016)

▲□ → ▲□ → ▲□ → ▲□ → ● ● ● ● ●

LMU	LUDWIG- MAXIMILIANS- UNIVERSITÄT MÜNCHEN	Intro 0 000	0 Theory 00 00 0000	Twin Experiments	GEMS 0000000	Retrodictions 00000000 0	Summary 00
				0000		000	

inverse mantle convection models

Twin Experiments (convergence)

Twin Experiments

Evolve Reference Twin from *initial* to *final* state.

Time period corresponding to 50 Myrs ($\approx 1/2$ overturn).

Initial and final state for reference twin (red=hot, blue=cold). (from Ghelichkhan & Bunge, 2016)

	LUDWIG- MAXIMILIANS-	Intro	Theory	Twin Experiments	GEMS	Retrodictions	Summary
LIVIU	UNIVERSITÄT MÜNCHEN	00000	00000	0000 00000000 0000	0000000	0000000 0 000	00

Twin Experiments

Iterate the adjoint many times from *initial* to *final* state.

Initial and final state reconstructions for increasing (top to bottom: 0,2,6) iterations (red=hot, blue=cold). Note that the initial state error is nearly eliminated through the inversion after 6 iterations. (from Ghelichkhan & Bunge, 2016)

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● の Q @

Twin Experiments

Convergence per iteration for *initial* and *final* state compared to reference twin.

Initial and final state residual. (from Ghelichkhan & Bunge, 2016)
LMU	LUDWIG- MAXIMILIANS- UNIVERSITÄT MÜNCHEN	Intro 0 00000	Theory 00 0000	Twin Experiments	GEMS 0000000	Retrodictions 00000000 0	Summary 00
				0000		000	

regularisation of the inversion through knowledge of the surface velocity field

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

0000000

Twin Experiments

Twin Experiments: surface velocity

Evolve reference convection model (Twin) from *initial* to *final* state.

- Pick a time period corresponding to 50 Myrs ($\approx 1/2$ overturn).
- See, if one recovers the intial state.

(a-d) temperatures (red=hot, blue=cold) at initial (a), intermediate (b,c) and final (d) state, (from Vynnytska & Bunge, 2014)

Twin Experiments: surface velocity

First guess for *initial* condition.

Take a simple 1-D profile as the *first guess* for the unknown temperature of the initial state.

First guess model temperature initial condition (from Vynnytska & Bunge, 2014)

Twin Experiments: surface velocity

First guess for *initial* condition.

Take a simple 1-D profile as the *first guess* for the unknown temperature of the initial state.

This unrealistic *first guess* state is equivalent to assuming there is *no convection*.

First guess model temperature initial condition (from Vynnytska & Bunge, 2014)

LMU	LUDWIG- MAXIMILIANS- UNIVERSITÄT MÜNCHEN	Intro O OOOC	Theory 00 00000	Twin Experiments	GEMS 0000000	Retrodictions 00000000 0	Summary 00	
т:				0000		000		

Recovered initial state temperature after **20** forward and adjoint iterations.

Left with assimilated history of model surface velocities.

Right with unconstrained (free slip) model surface.

first guess model temperature initial condition (from Vynnytska & Bunge, 2014)

The inversion is *unsuccessful* with unconstrained (free slip) model surface.

LMU	LUDWIG- MAXIMILIANS- UNIVERSITÄT MÜNCHEN	Intro O OOOOO	Theory 00 0000	Twin Experiments	GEMS 0000000	Retrodictions 00000000 0	Summary 00	
				0000		000		

True model temperature initial condition (from Vynnytska & Bunge, 2014)

Best guess model temperature initial condition with assimilated (left) and unconstrained surface velocities (right) (from Vynnytska & Bunge, 2014)

LMU	LUDWIG- MAXIMILIANS- UNIVERSITÄT MÜNCHEN	Intro O OOOOO	Theory 00 0000	Twin Experiments	GEMS 0000000	Retrodictions 00000000 0	Summary 00	
				0000		000		

True model temperature initial condition (from Vynnytska & Bunge, 2014)

Best guess model temperature initial condition with assimilated (left) and unconstrained surface velocities (right) (from Vynnytska & Bunge, 2014)

LMU	LUDWIG- MAXIMILIANS- UNIVERSITÄT MÜNCHEN	Intro O OOOOO	Theory 00 0000	Twin Experiments	GEMS 0000000	Retrodictions 00000000 0	Summary 00	
				0000		000		

True model temperature initial condition (from Vynnytska & Bunge, 2014)

Best guess model temperature initial condition with assimilated (left) and unconstrained surface velocities (right) (from Vynnytska & Bunge, 2014)

LMU	LUDWIG- MAXIMILIANS- UNIVERSITÄT MÜNCHEN	Intro 0 00000	Theory 00 0000	Twin Experiments	GEMS 0000000	Retrodictions 00000000 0	Summary 00	
				0000		000		

True model temperature initial condition (from Vynnytska & Bunge, 2014)

Best guess model temperature initial condition with assimilated (left) and unconstrained surface velocities (right) (from Vynnytska & Bunge, 2014)

LMU	LUDWIG- MAXIMILIANS- UNIVERSITÄT MÜNCHEN	Intro O	Theory 00	Twin Experiments	GEMS 0000000	Retrodictions	Summary 00	
		00000	0000	00000000		0		
				0000		000		

Initial State RMS error as a function of adjoint iteration

LUDWIG- MAXIMILIANS- UNIVERSITÄT MÜNCHEN	Intro	Theory	Twin Experiments	GEMS	Retrodictions	Summary	
	MÜNCHEN	00000	0000	000000000	0000000	00000000	00
				0000		000	

Initial State RMS error as a function of adjoint iteration

(note divergence for model with *free-slip* surface)

LUDWIG- MAXIMILIANS- UNIVERSITÄT MÜNCHEN	Intro	Theory	Twin Experiments	GEMS	Retrodictions	Summary	
	MÜNCHEN	00000	0000	000000000	0000000	00000000	00
				0000		000	

Initial State RMS error as a function of adjoint iteration

(note divergence for model with *free-slip* surface) (we understand this result as a consequence of Serrin's *uniqueness* theorem)

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへ(?)

LMU	LUDWIG- MAXIMILIANS- UNIVERSITÄT MÜNCHEN	Intro O OOOOO	Theory 00 0000	Twin Experiments 0000 000000●0	GEMS 0000000	Retrodictions 00000000 0	Summary 00	
				0000		000		

Final State RMS error as a function of adjoint iteration.

◆ロ > ◆母 > ◆臣 > ◆臣 > ● 臣 = のへ(?)

LMU	LUDWIG- MAXIMILIANS- UNIVERSITÄT MÜNCHEN	Intro O OOOOO	Theory 00 0000	Twin Experiments 0000 000000●0	GEMS 0000000	Retrodictions 00000000 0	Summary 00	
				0000		000		

Final State RMS error as a function of adjoint iteration.

(note there is convergence, i.e. the cost function is reduced, for either model)

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへ(?)

horizontal motion of Earth's surface is reconstructed for past ≈ 200 million years

provides boundary condition for velocity

one effectively exploits Serrin's theorem

horizontal motion of Earth's surface is reconstructed for past ≈ 200 million years

provides boundary condition for velocity

one effectively exploits Serrin's theorem

horizontal motion of Earth's surface is reconstructed for past ≈ 200 million years

provides boundary condition for velocity

one effectively exploits Serrin's theorem

horizontal motion of Earth's surface is reconstructed for past ≈ 200 million years

provides boundary condition for velocity

one effectively exploits Serrin's theorem

horizontal motion of Earth's surface is reconstructed for past ≈ 200 million years

provides boundary condition for velocity

one effectively exploits Serrin's theorem

horizontal motion of Earth's surface is reconstructed for past ≈ 200 million years

provides boundary condition for velocity

one effectively exploits Serrin's theorem

(日) (同) (三) (三) (三)

LMU	LUDWIG- MAXIMILIANS- UNIVERSITÄT MÜNCHEN	Intro 0 00000	Theory 00 0000	Twin Experiments	GEMS 0000000	Retrodictions 00000000 0	Summary 00
				0000		000	

compressibility effects

(These should be included, if one wants to apply geodynamic adjoint models to

seismically inferred Earth structure.)

LMU	LUDWIG- MAXIMILIANS- UNIVERSITÄT MÜNCHEN	In O	itro	Theory 00 0000	Twin Experiments	GEMS 0000000	Retrodictions 00000000 0	Summary 00	
					0000		000		

Initial and final state reconstructions for consistent (left), mixed (middle) and inconsistent (right) model (red=hot, blue=cold). Reference Twin (right most figure) (from Ghelichkhan & Bunge, 2016)

LUDWIG- MAXIMILIANS-	Intro	Theory	Twin Experiments	GEMS	Retrodictions	Summary
MÜNCHEN	0 00000	00 0000	0000 0000000	0000000	00000000	00
			0000		000	

Initial and final state reconstructions for consistent (left), mixed (middle) and inconsistent (right) model (red=hot, blue=cold). Reference Twin (right most figure) (from Ghelichkhan & Bunge, 2016)

< □ > < 同 > < E > < E > E < のQ @</p>

LMU	LUDWIG- MAXIMILIANS- UNIVERSITÄT MÜNCHEN	Intro 0 00000	Theory 00 0000	Twin Experiments	GEMS 0000000	Retrodictions 00000000 0	Summary 00
				0000		000	

Evolve Reference Twin (right column) from *initial* to *final* state.

Time period corresponding to 50 Myrs ($\approx 1/2$ overturn).

Initial and final state reconstructions for consistent (left), mixed (middle) and inconsistent (right) model (red=hot, blue=cold). Reference Twin (right most figure) (from Ghelichkhan & Bunge, 2016)

MU	LUDWIG- MAXIMILIANS- UNIVERSITÄT MÜNCHEN	Intro O	Theory 00	Twin Experiments	GEMS 0000000	Retrodictions	Summary 00
		00000	0000	00000000		0	
				0000		000	

Initial and final state reconstructions for consistent (left), mixed (middle) and inconsistent (right) model (red=hot, blue=cold). Reference Twin (right most figure) (from Ghelichkhan & Bunge, 2016)

< □ > < 同 > < E > < E > E < のQ @</p>

LMU	LUDWIG- MAXIMILIANS- UNIVERSITÄT MÜNCHEN	Intro 0 00000	Theory 00 0000	Twin Experiments	GEMS 0000000	Retrodictions 00000000 0	Summary 00	
				0000		000		

LMU	LUDWIG- MAXIMILIANS- UNIVERSITÄT MÜNCHEN	Intro 0 00000	Theory 00 0000	Twin Experiments	GEMS 0000000	Retrodictions 00000000 0	Summary 00	
				0000		000		

◆ロ > ◆母 > ◆臣 > ◆臣 > ● 臣 = のへ(?)

LMU	LUDWIG- MAXIMILIANS- UNIVERSITÄT MÜNCHEN	Intro 0 00000	Theory 00 0000	Twin Experiments	GEMS 0000000	Retrodictions 00000000 0	Summary 00	
				0000		000		

◆ロ > ◆母 > ◆臣 > ◆臣 > ● 臣 = のへ(?)

LMU	LUDWIG- MAXIMILIANS- UNIVERSITÄT MÜNCHEN	Intro 0 00000	Theory oo oooo	Twin Experiments 0000 00000000	GEMS 0000000	Retrodictions 00000000 0	Summary 00	
				0000		000		

/IG- MILIANS- ERSITÄT CHEN	Intro 0 00000	Theory 00 0000	Twin Experiments	GEMS 0000000	Retrodictions 00000000 0	Summary 00
			0000		000	

LMU	LUDWIG- MAXIMILIANS- UNIVERSITÄT MÜNCHEN	Intro 0 00000	Theory 00 0000	Twin Experiments 0000 00000000	GEMS 0000000	Retrodictions 00000000 0	Summary 00	
				0000		000		

(from Ghelichkhan & Bunge, 2016)

LMU	LUDWIG- MAXIMILIANS- UNIVERSITÄT MÜNCHEN	Intro 0 00000	Theory 00 0000	Twin Experiments 0000 0000000	GEMS 0000000	Retrodictions 00000000 0	Summary 00	
				0000		000		

Application of simple Geodynamic Earth models (GEMS) to seismic structure

(Uniqueness, and effect of model initialisation)

▲□ → ▲□ → ▲□ → ▲□ → ● ● ● ● ●

- Schuberth et al., 2009a,b, Davies et al., 2012
- Schaber et al., 2009
- Goal:
 - compare geodynamic with seismic models by going through the convection process and mapping geodynamic to elastic variation

MU	LUDWIG- MAXIMILIANS- UNIVERSITÄT MÜNCHEN	Intro O	Theory 00	Twin Experiments 0000	GEMS	Retrodictions	Summary 00
		00000	0000	00000000		0	
				0000		000	

Simple Geodynamic Earth Models

Final State 3 viscosity layers Isochemical **80** million grid points

initialized from present-day structure for unknown heterogeneity 40 million years ago

(from Horbach et al., 2014)

LMU	LUDWIG- MAXIMILIANS- UNIVERSITÄT MÜNCHEN	Intro O OOOOO	Theory 00 0000	Twin Experiments 0000 00000000	GEMS 000000	Retrodictions 00000000 0	Summary 00	
				0000		000		

Simple Geodynamic Earth Models

Initial State Corrections shown after 1 (left), 2 (middle) and 7 (right) iterations

only small corrections are needed after 7 iterations (right most column)

(from Horbach et al., 2014)

LMU	LUDWIG- MAXIMILIANS- UNIVERSITÄT MÜNCHEN	Intro O OOOOO	Theory 00 0000	Twin Experiments 0000 00000000	GEMS 0000000	Retrodictions 00000000 0	Summary 00	
				0000		000		
-								

Simple Geodynamic Earth Models

Optimal **Initial State 40 million years ago** 3 viscosity layers Isochemical **80** million grid points

initialized from **present-day** structure for unknown heterogeneity 40 million years ago

(from Horbach et al., 2014)

Simple Geodynamic Earth Models

(from Horbach et al., 2014)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで

Simple Geodynamic Earth Models

Optimal Initial State computed from **four** different First Guesses present-day (a), rotated (b), blank (c), backward advection (d)

Residual at final state vs. Iteration for four ' initial guess' models: a) tomo b) rotated tomo c) blank mantle d) backw. advection.

Backward advection (cyan curve on the right) is a poor

initialisation for upper mantle structure

LMU	LUDWIG- MAXIMILIANS- UNIVERSITÄT MÜNCHEN	Intro 0 0000	Theory 00 0000	Twin Experiments 0000 00000000	GEMS 0000000	Retrodictions	Summary 00	
				0000		000		

Retrodictions

Global High Resolution (pprox 670 million grid points) Geodynamic Earth Models

(sensitivity to tomographic input model and viscosity profile)

(日) (日) (日) (日) (日) (日) (日)

LMU	LUDWIG- MAXIMILIANS- UNIVERSITÄT MÜNCHEN	Intro O OOOOO	Theory 00 0000	Twin Experiments 0000 0000000	GEMS 0000000	Retrodictions	Summary 00
				0000		000	

Model Overview

- (\approx 670 million grid points), grid point distance $\approx 10 km$
- per adjoint iteration ≈ 1 million Core Hours
- six adjoint iterations per model
- four different models with Earthlike convective vigor
- pyrolite composition assumed for the sake of simplicity
- sensitivity to tomographic input structure and lower mantle viscosity

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Tomographic input model

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

(from Colli et al., 2017)

LMU	LUDWIG- MAXIMILIANS- UNIVERSITÄT MÜNCHEN	Int o oc	ro The 00	ory Twir 000	e Experiments 0 00000	GEMS 0000000	Retrodictions	Summary 00
				000	0		000	

Viscosity profiles and dynamic topography kernels

(from Colli et al., 2017)

Conversion from Elastic to Geodynamic heterogeneity

イロト イポト イヨト イヨト 三日

(from Colli et al., 2017)

LMU	LUDWIG- MAXIMILIANS- UNIVERSITÄT MÜNCHEN	Intro 0 00000	Theory 00 0000	Twin Experiments 0000 00000000	GEMS 0000000	Retrodictions	Summary 00
				0000		000	

Misfit Reduction

(from Colli et al., 2017)

LMU	LUDWIG- MAXIMILIANS- UNIVERSITÄT MÜNCHEN

tro	The
	00
0000	00

Twin Experi

ments GE OC Retrodictions

Summary 20

Hemispheric Retrodictions (Atlantic Realm)

LMU	LUDWIG- MAXIMILIANS- UNIVERSITÄT MÜNCHEN	Intro 0 00000	Theory 00 0000	Twin Experiments 0000 00000000	GEMS 0000000	Retrodictions 0000000● 0	Summary 00	
				0000		000		

Histograms

LMU	LUDWIG- MAXIMILIANS UNIVERSITÄT MÜNCHEN	i-	Intro O OOOOO	Theory 00 0000	Twin Experiments 0000 00000000	GEMS 0000000	Retrodictions	Summary 00
					0000		000	
			D					

Model AM2

40 Ma

Upper Mantle Temperature

Upper Mantle Flow

Velocities

Dynamic Topography

(Imax 20)

LMU	LUDWIG- MAXIMILIAN UNIVERSITÄT MÜNCHEN	5-	Intro O OOOOO	Theory 00 0000	Twin Experiments 0000 00000000	GEMS 0000000	Retrodictions	Summary 00
					0000		000	
			 D	1.				

Model AM2

35 Ma

Whole Mantle Model Thermal Field Whole Mantle Model Flow Velocities Upper Mantle Temperature Upper Mantle Flow Velocities Dynamic Topography

(Imax 20)

LMU	LUDWIG- MAXIMILIANS- UNIVERSITÄT MÜNCHEN		Intro O OOOOO	Theory 00 0000	Twin Experiments 0000 00000000	GEMS 0000000	Retrodictions 00000000	Summary 00
					0000		000	
			 D	1 A 4 4 4 4 4 4				

Model AM2

30 Ma

Whole Mantle Model Thermal Field Whole Mantle Model Flow Velocities Upper Mantle Temperature Upper Mantle Flow Velocities

Dynamic Topography

(Imax 20)

LMU	LUDWIG- MAXIMILIAN UNIVERSITÄT MÜNCHEN	5-	Intro O OOOOO	Theory 00 0000	Twin Experiments 0000 00000000	GEMS 0000000	Retrodictions	Summary 00
					0000		000	
			 D	1.				

Model AM2

25 Ma

Whole Mantle Model Thermal Field Whole Mantle Model Flow Velocities Upper Mantle Temperature Upper Mantle Flow Velocities

Dynamic Topography

(Imax 20)

LMU	LUDWIG- MAXIMILIAN UNIVERSITÄT MÜNCHEN	5-	Intro O OOOOO	Theory 00 0000	Twin Experiments 0000 00000000	GEMS 0000000	Retrodictions	Summary 00
					0000		000	
			 D	1.				

Model AM2

20 Ma

Whole Mantle Model Thermal Field Whole Mantle Model Flow Velocities Upper Mantle Temperature Upper Mantle Flow Velocities

Dynamic Topography

(Imax 20)

LMU	LUDWIG- MAXIMILIANS UNIVERSITÄT MÜNCHEN	ā•	Intro O OOOOO	Theory 00 0000	Twin Experiments 0000 00000000	GEMS 0000000	Retrodictions	Summary 00
					0000		000	
			 D .	1.1.1.1.1.1.1.1				

Model AM2

15 Ma

Whole Mantle Model Thermal Field Whole Mantle Model Flow Velocities

Upper Mantle Temperature Upper Mantle Flow Velocities Dynamic Topography

(Imax 20)

LMU	LUDWIG- MAXIMILIANS UNIVERSITÄT MÜNCHEN	ā•	Intro O OOOOO	Theory 00 0000	Twin Experiments 0000 00000000	GEMS 0000000	Retrodictions	Summary 00
					0000		000	
			 D .	1.1.1.1.1.1.1.1				

Model AM2

10 Ma

Whole Mantle Model Thermal Field Whole Mantle Model Flow Velocities Upper Mantle Temperature Upper Mantle Flow Velocities

Dynamic Topography

(Imax 20)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

LMU	LUDWIG- MAXIMILIA UNIVERSIT MÜNCHEN	NS- ÅT	Intro O OOOOO	Theory 00 0000	Twin Experiments 0000 00000000	GEMS 0000000	Retrodictions	Summary 00
					0000		000	
			 -					

Model AM2

5 Ma

Whole Mantle Model Thermal Field Whole Mantle Model Flow Velocities Upper Mantle Temperature Upper Mantle Flow Velocities

Dynamic Topography

(Imax 20)

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

LMU	LUDWIG- MAXIMILIAN UNIVERSITĂ MÛNCHEN	IS- T	Intro O OOOOO	Theory 00 0000	Twin Experiments 0000 00000000	GEMS 0000000	Retrodictions	Summary 00
					0000		000	
			 -					

Model AM2

today

Whole Mantle Model

Thermal Field

Whole Mantle Model

Flow Velocities

Upper Mantle

Temperature

Upper Mantle Flow

Velocities

Dynamic Topography

(Imax 20)

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 - のへぐ

MU	LUDWIG- MAXIMILIAI UNIVERSITA MÜNCHEN	45- (T		Intro O OOOOO	Theory 00 0000	Twin Experiments 0000 00000000	GEMS 0000000	Retrodictions	Summary 00
						0000		000	
-			_						

40 Ma

Thermal Field

Upper Mantle Velocity

Dynamic Topography (Imax 40)

▲□▶ ▲@▶ ▲目▶ ▲目▶ = 目 = のへの

MU	LUDWIG- MAXIMILIA UNIVERSITJ MÜNCHEN	NS- LT	Intro O OOOOO	Theory 00 0000	Twin Experiments 0000 00000000	GEMS 0000000	Retrodictions	Summary 00
					0000		000	
-								

35 Ma

Thermal Field

Upper Mantle Velocity

Dynamic Topography (Imax 40)

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

MU	LUDWIG- MAXIMILIAN UNIVERSITĂ' MÜNCHEN	5• T		Intro O OOOOO	Theory 00 0000	Twin Experiments 0000 00000000	GEMS 0000000	Retrodictions	Summary 00
						0000		000	
_			-						

30 Ma

Thermal Field

Upper Mantle Velocity

Dynamic Topography (Imax 40)

MU	LUDWIG- MAXIMILIAN UNIVERSITĂ' MÜNCHEN	5• T		Intro O OOOOO	Theory 00 0000	Twin Experiments 0000 00000000	GEMS 0000000	Retrodictions	Summary 00
						0000		000	
_			-						

25 Ma

Thermal Field

Upper Mantle Velocity

Dynamic Topography (Imax 40)

MU	LUDWIG- MAXIMILIAN UNIVERSITĂ' MÜNCHEN	IS- T		Intro O OOOOO	Theory 00 0000	Twin Experiments 0000 00000000	GEMS 0000000	Retrodictions	Summary 00
						0000		000	
-			-						

20 Ma

Thermal Field

Upper Mantle Velocity

Dynamic Topography (Imax 40)

MU	LUDWIG- MAXIMILIAN UNIVERSITĂ MÜNCHEN	IS- T		Intro O OOOOO	Theory 00 0000	Twin Experiments 0000 00000000	GEMS 0000000	Retrodictions	Summary 00
						0000		000	
-			_						

15 Ma

Thermal Field

Upper Mantle Velocity

Dynamic Topography (Imax 40)

MU	LUDWIG- MAXIMILIANS UNIVERSITÄT MÜNCHEN		Intro O OOOOC	Th oc	ieory))00	Twin Experime 0000 00000000	nts	GEMS 0000000	Retrodictio	ons 00	Summary 00	
						0000			000			
_	-											

10 Ma

Thermal Field

Upper Mantle Velocity

Dynamic Topography (Imax 40)

LMU	LUDWIG- MAXIMILIANS UNIVERSITÄT MÜNCHEN	Intro O OOOOO	Theory 00 0000	Twin Experiments 0000 00000000	GEMS 0000000	Retrodictions	Summary 00	
_	_	 	_	0000		000		

5 Ma

Thermal Field

Upper Mantle Velocity

Dynamic Topography (Imax 40)

MU	LUDWIG- MAXIMILIAN UNIVERSITĂ MÛNCHEN	IS- T		Intro O OOOOO	Theory 00 0000	Twin Experiments 0000 00000000	GEMS 0000000	Retrodictions	Summary 00
						0000		000	
-			_						

today

Thermal Field

Upper Mantle Velocity

Dynamic Topography (Imax 40)

LMU	LUDWIG- MAXIMILIANS- UNIVERSITÄT MÜNCHEN	Intro 0 00000	Theory 00 0000	Twin Experiments 0000 00000000	GEMS 0000000	Retrodictions	Summary 00
				0000		000	

Geology

Sac

LMU	LUDWIG- MAXIMILIANS- UNIVERSITÄT MÜNCHEN	Intro 0 00000	Theory 00 0000	Twin Experiments 0000 0000000	GEMS 0000000	Retrodictions	Summary 00
				0000		000	

Paris

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへで

LMU	LUDWIG- MAXIMILIANS- UNIVERSITÄT MÜNCHEN	Intro O OOOOO	Theory 00 0000	Twin Experiments 0000 00000000	GEMS 0000000	Retrodictions 00000000 0	Summary ●○	
				0000		000		

Computational aspects

- $10^9 10^{10}$ free parameters (resolution dependent)
- iterative conjugate gradient scheme
- \approx 10 iterations needed to reach convergence
- 1 forward and 1 adjoint simulation per iteration
- need to store u and T at each time-step in the forward simulation

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

- forward and adjoint equations are similar \rightarrow same numerical code can be used
- This is expensive.

LMU	LUDWIG- MAXIMILIANS- UNIVERSITÄT MÜNCHEN	Intro O OOOOO	Theory 00 0000	Twin Experiments 0000 00000000	GEMS 0000000	Retrodictions 00000000 0	Summary O
				0000		000	

Conclusion

Growing model complexity makes it attractive to *test* geodynamic simulations by retrodictions

Uniqueness properties make plate motions the *input* rather than the output of a retrodiction

Compressible adjoint equations allow us to apply retrodictions to seismically derived mantle structure

Retrodictions open exiting possibilities for collaborative work *across* the Earth Sciences

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <