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Unique
Earth?

Why is Earth the only !
terrestrial planet in our

solar system with plate
tectonics, liquid water,

temperate climate, and
life

* Plate tectonics likely governs planetary evolution from core to

atmosphere
* Plate tectonics as a carbon scrubber (Walker et al 1981; Berner et al 1983)

* Desire a predictive theory about conditions for plate tectonics to
occur



The “Plate Generation” questions

How does plate tectonics arise from a convecting mantle?

Why Earth, not Venus (or Mars)?

What governs whether we expect to find plate tectonics in
other solar systems?

When and how did plate tectonics emerge?

How do plates evolve and reorganize?
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Mantle rock “creep” rheology
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Plate Generation
Mechanisms

Most terrestrial mantles undergo
stagnant lid convection

Earth has self-softening feedbacks
 deformation softens material

 weak zones focus deformation

e causes more softening, more focusing:

shear-localization
Allows convecting mantle to generate

* strong broad plates,
* narrow, weak long-lasting boundaries
* localized strike-slip shear




Screencast-O-Matic.com _ .‘ Image Landsat

Peridotite mylonite (Lars Hansen)



Grain-scale Processes

* Mineral grains grow if “static”

Hiraga etal 2010




Grain-scale Processes

* Mineral grain-size reduction?

* With deformation and damage

(dislocations), grain-size reduces
* Rocks apparently soften as grains

“shrink” =» positive feedback

 “Deep” lithospheric mechanism
e cold ductile region
e Evident in mylonites

log,,(Shear stress)
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But in single-phase rocks...

Grain reduction only in
dislocation creep (dynamic

recrystallization): independent
of grain-size

Grain-size weakening only in
diffusion creep when grains

only grow
Shoudn’t be any self-softening

feedback
« deBresser et al (2001)



Grain-damage & pinning in
rock mixtures*

« Mantle rocks (peridotite)
are mixture of olivine and
pyroxene

 Grain growth blocked
(pinned) by interface
between components _

e Damage acts to “sharpen”
interface

 Sharpening of interface and ®
pinning drives grains to
smaller sizes and material

softens

e Damage and softening
coexist

* Pinning retards healing

*Bercovici & Ricard 2012, 2013
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Pinning slows grain-growth

High surface
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Pinning helps damage

Damage “Easier”
= wor k provides Damage: less
energy increase enerqy needed N4
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Coupled “interface” and “grain-size”
evolution laws

coarsening

factor
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Emergence of

plate tectonics:
When and how

did plate
tectonics begin?

Present Suggested onset time

of plate tectonics

Phanerozoic

0.54 Gya

<— ~0.85 Gya (Hamilton 2011)
<— ~1 Gya (Stern 2005)

Proterozoic

2.5 Gya

<— ~2.8 Gya (Brown 2006)
<— >3 Gya (Condie & Kroner 2008)

<— >3.1 Gya (Cawood et al. 2006)
<— ~3.2 Gya (Van Kranendonk et al. 2007)

<— >3.6 Gya (Nutman et al. 2002)

<— >3.8 Gya (Komiya et al. 1999)

4.0 Gya <«— ~3.9 Gya (Shirey et al. 2008)

4.5 Gya

<— >4.2 Gya (Hopkins et al. 2008)

Korenaga Ann.Revs EPS 2013



Intermittent subduction and
inherited damage Bercovici & Ricard (2014)
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Divergence Vorticity

Earth-like case

Cool surface:

Low healing

High damage Viscosity



Divergence Vorticity

Venus-like case

Hot surface:

High healing

Low damage Viscosity




Grain damage, mixing and tectonic hysteresis

w‘t\ o
R monomlnerallc O

 Mylonites and ultramylonites often form bands of mixed grains (esp.
in peridotites)
 Polyminerallic damage+pinning enhanced by inter-grain mixing



Grain mixing

Sheared (lherzolite)
peridotite (Skemer
& Karato 2008)

500 um

Drawing after EBSD
image (Bruijn &
Skemer 2014)

100 um
P




Diffusive
grain
mixing
model

0
ot
=v+uy v= Z OiV; Z ¢;u; = 0 mean and grain-diffusive velocity

V  (¢;vi) =0 mass conservation

= —¢; K - V¢, Where J 7£ i diffusive velocity ~ vol. fraction gradient

= x(¢, Ri,r)T anisotropic diffusivity ~ stress tensor

Do
¢Z -V - (¢z¢j XT - V¢z) Mass advection-diffusion egn

Dt Bercovici & Skemer (2017)
Bercovici & Mulyukova (2018)




Diffusive grain mixing + damage: 1D example
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Zoomed out (“wide” domain)
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Deformation maps and observations (field and
lab)
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Cross & Skemer 2017
calcite/anhydrite experiments
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creeping

unmixed

intermediate

‘grain size’

damage/healing (gD/()

Two-phase grain damage with mixing transition

* Three equilibrium branches
1. Unmixed, large grain, strong “creeping” branch

2. Mixed, small grain, weak “mylonite” branch
3. Intermediate grain unstable branch

Bercovici & Ricard (2016)



Planetary

states 5
S
Grain-damage &
hysteresis
* implies a plate-
tectonic state
allows for co- %
existence of =
strong and very o

weak states

* representing
plates and plate
boundaries
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e Co-existence largely depends on damage:healing gD/C
e Earth has large g¢D/C and Venus much smaller



Summary

* Grain-damage mechanism, built from basic physics, consistent
with lab and field observations, allows generation of plate

tectonics with Earth conditions
 Emergence of global plate tectonics takes 1Gyr as damage zones

accumulate and are inherited to yield fully formed plates driven
by subduction only
* On, Venus damaged weak zones heal and don’t accumulate
* Grain-damage, mixing and (effective) hysteresis implies two
deformation states: plates and plate boundaries



