Deformations associated with megaearthquakes: rheology of the asthenosphere and of the subduction interface

L. Fleitout, J.D. Garaud, O. Trubienko, E. Klein, and numerous 'GPS' colleagues (C. Vigny...)

Collège de France 1-12-2016

Huge velocity perturbations are observed more than 1000km away from the earthquake

Velocity perturbations 4yrs after Aceh (dec 2004)

1 yr after Maule (febr 2010)

295

295

300°

GPS: 20 mm/yr

GPS: 50 mm/yr >

300°

305°

-35°

305

The three megaearthquakes (Aceh 2004, Maule 2010, Tohoku 2011) are the first earthquakes of magnitude around 9 since modern techniques to monitor deformation are available. They are associated with far-field, long-lasting velocity perturbations

285°

285

-35°

290

290°

The response of the Earth to megaearthquakes: A large-scale 'experiment' •To test the Earth's mechanical properties (asthenosphere, subduction channel) •To explore the 'time dependence' of stress/strains

Some of the questions that we can tackle with postseismic deformations after megaearthquakes

Is-there a low-viscosity asthenosphere? What rheology (newtonian, non-linear creep), What thickness?

What occurs below the brittle part of the subduction interface? Localization of the deformation in low-viscosity ductile shear zones?

This is not a new problem (Elsasser, Pollitz and coauthors...) But we have now precise data and the numerical ability to treat the problem in 3D

Note: The rheology obtained here will be the rheology for a timescale of a few years. Long term rheology?

Non-dimensionalized horizontal displacements function of distance

AFTER MAULE

In 2012 (velocity difference between after and before Maule) Notice the vertical uplift on the Andes

After the three giant earthquakes at distances between (and 1000km)

The postseismic signal non dimensionalised by coseismic is similar for the three earthquakes

The postseismic phase continues for several decenies

Postseismic velocities after a subduction earthquake:

Large perturbation of horizontal velocities. 'Bell shape' of the postseismic over coseismic velocity function of distance curve
Similar non-dimensional curve for the far-field stations in various zones of the world

- •Subsidence in the far-field, uplift on the oceanward side of the volcanic arc
- •The perturbation of the velocities persists for at least several decennies

Finite element mechanical models are used to understand the origin of those postseismic velocities

Mesh for Maule earthquake

Finite element mesh for Japan computations with Zset-Zebulon

horizontal

vertical

The coseismic deformation induces stresses in the mantle, and on the plate interface.

What induces postseismic deformation?

- Slip on the fault plane at shallow depths?
- Relaxation in the asthenosphere?
- Relaxation in a low viscosity channel (LVC)?

Then if there is viscoelastic deformation, what is the appropriate rheology?

Viscosities obtained from inversion (Japan)

viscosities:

Asthenosphere (70-200km): 1.6 10¹⁸Pas (a short-term viscosity?)

LVCh: from 10¹⁷ Pas to 6. 10¹⁷ Pas

LVW1: 4. 10¹⁷ Pas? (poorly constrained)

No additional postseismic slip on the interface required

Comparison between observed and predicted postseismic velocities in Japan (jan to dec 2012)

Horizontal velocities

Vertical velocities

Fit to far-field stations time series

2.5

2.5

Both relaxation in the asthenosphere and relaxation in LVW or LVCh are necessary

A model with only relaxation in the asthenosphere which 36' fits the far-field velocities (black) induces negligible nearfield velocities

A model with only relaxation in the LVCh which fits the Japanese velocities (red) induces negligible far-field velocities. Impact of the viscosity in various zones on horizontal velocities ('partial derivatives')

🛹 Fault

Impact of the viscosity in various areas on vertical velocities ('partial derivatives')

lapan

0

-70 km

-200 km

In Chile, additional slip on the interface is required

Modeled vs measured mean velocities over the 2nd year after the earthquake :

a) horizontal vel. in the case of a pure viscoelastic relaxation model

b) vertical vel. in the case of a pure viscoelastic relaxation model

c) horizontal vel. in the case of a viscoelastic relaxation + afterslip model

d) vertical vel. in the case of a viscoelastic relaxation + afterslip model

Klein et al. GJI 2016

		η
SC1	shallow channel 1	1,85E+018
SC2	shallow channel 2	7,50E+017
SC3	shallow channel 3	5,01E+017
DC1	deep channel 1	1,86E+017
DC2	deep channel 2	5,72E+017
DC2	deep channel 3	5,72E+017
CR	crust (70-90 km)	2,00E+018
OC	ocean (70-90 km)	9,70E+018
Asthenosphere	90-200 km	3,00E+018
	200-270 km	8,40E+018

$$\eta_2/\eta_1 = cst = 6,5$$

 $\mu_2/\mu_1 = cst = 3$

Far-field horizontal postseismic velocities after 2004 Sumatra earthquake

2008 velocities- predicted vs observations. asthe:3. 1018 Pas**

An asthenosphere of finite thickness:

This curve keeps on increasing in case of low viscosity in the whole upper mantle

After the three giant earthquakes at distances between (and 1000km)

The postseismic signal non dimensionalised by coseismic is similar for the three earthquakes but the deviatoric stresses differ by a factor 5!!!

Summary of the results from models of postseismic deformation after large subduction earthquakes:

Relaxation in the asthenosphere: Necessary for explaining farfield horizontal and vertical velocities. Viscosity around 2 to 4 10¹⁸ Pas (likely a long-term 'transient'). Asthenosphere 150-200km thick;

Relaxation in a 'low viscosity channel': necessary for explaining middle-field velocities (uplift).

Slip on the interface at shallow depths: Important for Aceh and Maule. Less for Tohoku

What we have learnt from the deformations following megaearthquakes:

Is-there a low-viscosity asthenosphere? What rheology (newtonian, non-linear creep), what thickness

What occurs below the brittle part of the subduction interface? Localization of the deformation in low-viscosity ductile shear zones?

Other tectonic implications: What are the ingredients of the stress/strain-field? Asthenosphere (200km thick?) with a viscosity around 3.10¹⁸ Pa.s. Transient creep but not power law rheology

A low viscosity channel is clearly identified: serpentine; hydrated material?

Stresses and strains vary in time: Only close to megaearthquakes?

Implications concerning the stress evolution along the slab interface and within the overiding and subducting plates

What occurs on longer time-scales?

The seismic cycle

Viscoelastic versus elastic backslip... Observations and models 40yrs after Valdivia, before Maule (referential of North-East South America)

Notice eastward velocities far inland in front of Maule

Back-slip

There are several equivalent methods to model the seismic cycle Elastic backslip implicitely assumes a large viscosity (>10²¹ Pas) But the asthenosphere has a low viscosity....

Observed 40yrs after Valdivia, before Maule (referential of North-East South America)

Are the present-day strains 'Geologic' strains or effect of the seismic cycle?

What is the long-term convergence[?] velocity between the Okhotsk and Amour plates?

