The inner core

The hemispherical heterogeneity,

Implications for a possible growing mechanism

Annie Souriau

CNRS, Institut de Recherche en Astrophysique et Planétologie, Observatoire Midi-Pyrénées, Toulouse, France

Collège de France, November 25, 2011

Outline

- Some widely accepted features
 - The radial structure of the core
 - The hemispherical heterogeneity inside the inner core
- A dynamical model implying crystallization translation fusion of the inner core
- Consequences, difficulties
- Conclusions

Some widely accepted features

(Labrosse et al., 2001; Deguen, 2009)

• Some widely accepted features: the hemispherical heterogeneity

3- the asymmetry of the isotropic layer between depths 30 and 100 km below ICB

Uppermost isotropic inner core (30-100 km below ICB): Slow, low attenuation

W

100 to 400 km below ICB : anisotropic

Ε

Uppermost isotropic inner core (30-100 km below ICB): Fast, strong attenuation

100 to 400 km below ICB No detectable anisotropy

How to explain this asymmetry? Two models:

1- A texture forced by the thermal heterogeneities at the base of the mantle

(model proposed by Aubert et al. 2008, + Bergmann 1997 + Cormier 2007)

2- A model implying a permanent lateral translation of the inner core from W to E

(model proposed by Monnereau et al. 2010 + Alboussière et al. 2010)

Seismological data sampling the uppermost inner core

attempt to better sample polar regions

Monnereau et al., 2010

Constraints given by the data

Monnereau et al., 2010

Multiple scattering of seismic waves

Inner core

Each grain is anisotropic The medium is statistically homogeneous and isotropic

Determination of the grain size from seismic velocities and attenuation (multiple scattering modeling)

hcp (hexagonal) iron (Vočadlo, 2007)

The evolution of grain size in the inner core

- Growth of the grains occurs by migration of the boundaries (Venet et al., 2009)
- Small grains to the West => cristallization occurs at side G (G=growing)
- Increase of grain size from West to East => East side older than West side

Monnereau et al., 2010, Venet et al., 2009

<u>A translational mode of thermal convection:</u>

Model of inner core convection with open boundaries (phase change at the surface is allowed)

Monnereau et al., 2010; Alboussière et al., 2010

Monnereau et al., 2010; Alboussière et al., 2010

Age and grain size in the inner core

Grain size (m) 237 316 422 562 750 1000 1334 1778 2371

Monnereau et al., 2010

Consequences and difficulties

1- This process is still active today

=> Convection, thus super-adiabatic conditions, thus the inner core is young

2- Why is the translation in the equatorial plane?

- Heat is preferentially extracted at equator
 - liquid core convection cells along the tangent cylinder (Yoshida et al., 1996)
 - Influence of the forcing by thermal heterogeneities at CMB (Aubert et al., 2008)
- Influence of the inner core flattening (Alboussière et al., 2010)

3- This process is hardly compatible with inner core differential rotation

- 4- How to maintain the innermost inner core at the center of the Earth? Possible if it corresponds to a phase transition of iron related to (P, T) conditions
- 5- A possible explanation of the dense layer at the base of the liquid core_
 - 6- How to explain the anisotropy (strong to the W, low to the E)_

Invoke higher degrees of convection

5- A possible explanation of the dense layer at the base of the liquid core

Freezing / melting results in a fractionation of impurities of the liquid and in an enrichment of the solid in iron

(Alboussière et al., 2010)

6- Explain the anisotropy: Influence of the viscosity on the style of convection

Velocity field for 3 different viscosities of the inner core

High viscosity

→ Uniform velocity field (translation) Lobsided growth, age increase from F to M

Intermediate viscosity

→ Convective structures at the freezing side Uniform velocity at the melting side Lobsided growth, age more or less uniform on side F, increasing from center to M on side M

Low viscosity → Convective structures everywhere Radial growth

Mizzon and Monnereau, AGU Fall meeting, 2011

A test from seismological data using the differential travel times PKP(BC)-PKP(DF)

The standard deviations of the travel time anomalies are only slightly larger on side G than on side M

CONCLUSIONS

Seismic observations

• The isotropic layer between 30 et 90 km beneath ICB has a cylindrical symmetry with horizontal axis GM

• Evolution of seismic velocities and attenuation from G to M :

G to the West, slow with low attenuation *M* to the East, fast with a higher attenuation

Iron grain size

• These W-E differences may be explained by an *increase in iron grain size from West to East* (~500 m at G, a few km at M)

Dynamical model (with open boundaries)

• The inner core is subject to a permanent translation from W to E, with crystallization on side G and melting on side M.

Consequences of the crystallization-fusiontranslation model

• The inner core growth only from side West, but there is a net radius increase in all the directions.

• The age of the inner core increases from West to East. The iron crystals in the inner core are younger than the inner core itself (i.e. younger than the beginning of formation of the inner core)

• The crystal size ratio at W and E sides imposes a translation velocity > 3 crystallization rate

• This model explains the formation of a dense layer at the base of the liquid core

• This model explains the hemispherical variations in Vp et Qp of the isotropic layer.

• A model with higher degrees of convection also explains the hemispherical variations of anisotropy, if viscosity is of the order of 10¹⁸ Pa.s.

In the future:

- Combine thermal forcing by the mantle + permeable boundaries of the inner core
- Test the different models with seismic observations

Verne. Caricature par Gill, parue dans L'Éclipse du 13 déc. 1874. Phot. © Roger-Viollet

La science est faite d'erreurs, mais d'erreurs qu'il est bon de commettre, car elles mènent peu à peu à la vérité.

J.V.