Learning streaming and distributed big data
using core-sets
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Challenges of this talk

Forge links between:
*Computational Geometry
*Core-sets
*Machine Learning of Big Data
*Robotics



Challenges of this talk

Forge links between:

* Approximated Caratheodory
Theorem

* Core-sets for mean queries
*Google’s PageRank
*Real time pose estimation



PlgData HEYTT I T Yy

* Volume: huge amount of data points
e Variety: huge number of sensors
* Velocity: data arrive in real-time streaming

Need:

e Streaming algorithms (use logarithmic memory)
* Parallel algorithms (use networks, clouds)

e Simple computations (use GPUs)

* No assumption on order of points



Big Data Computation model
* = Streaming + Parallel computation

* Input: infinite stream of vectors

* n = vectors seen so far

* ~logn memory

* VMl processors

* ~log (n)/M insertion time per point
(Embarrassingly parallel)



Challenge:
Find RIGHT data from Big Data

Given data D and Algorithm A with A(D)

intractable, can we efficiently reduce
D to Cso that A(C) fast and A(C)~A(D)?

D

Provable guarantees on approximation (el e o

with respect to the size of C /e %)
C). 6




Naive Uniform Sampling (RANSAC)




Naive Uniform Sampling

a N ° Sn:mall _cluster
9 5 9 is missed

@ o e
Sample a set U of m points uniformly



Coreset for Image Denoising
[F, Feigin , Sochen [SSVM’13]
* Existing de-noising algorithms works only on
small (low-definition) images off-line

* For HD or real-time streaming:
Use random sampling (RANSAC)




RANSAC will not find rare but
Important parts
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From Big Data to Small Data

Suppose that we can compute such a corset C of size

1 .
- for every set P of n points

* intimen?,
e off-line, non-parallel, non-streaming algorithm

o =
,,,,,,,,,,,,,,,




.2 . .
Read the first . streaming points and reduce them

5
1 L 2
into — weighted points in time (—)

€ €

1 + € corset for P;




2 . .
Read the next . streaming point and reduce them

5
1 . 2
into — weighted points in time (—)

€ €

1 + € corset for P, 1 + € corset for P,
| e
/} .. /5’%/!
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Merge the pair of e-coresets into an e-corset
2 . .
of . weighted points

1 + e-corset for P; U P,

i /L /
— — "t
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Delete the pair of original coresets from memory

1 + e-corset for P; U P,




2 . L1,
Reduce the . weighted points into . weighted
points by constructing their coreset

1 + e-corset for
1 + e-corset for P; U P,




2 . L1,
Reduce the . weighted points into . weighted
points by constructing their coreset

1 + e-corset for
1 + e-corset for P; U P,

| =(1 + €)*-corset for P; U P,




(1 + €)*-corset for P, U P,

(1 + €)-corset for P




(1 + €)?-corset for P, U P,

(1 + €)-corset for P; (1 + €)-corset for P,




(1 + €)*-corset for P, U P, (1 + €)-corset for P; U P,




(1 + €)*-corset for P, U P, (1 + €)*-corset for P; U P,







(1+ €)*-coresetfor |

P,UP,UP;UP,




(1 + €)3-coreset for |

P,UP,UP;UP,




Size of Storage (# of doubles)

107

Coreset
Entire Input

10 ¢

10 ¢

500

Size of Input

10° 2,688,000



Parallel Computation

%




Parallel Computation




Parallel Computation

Run off-line
algorithm
on corset

usingsingle T /? %g/?

computer




Parallel+ Streaming Computation

Br¥ssl

29



~
L ;J
s, !
gw ‘k \"-k(.‘g ﬂ
Y Y
i “ 5

L IWME“ME‘% LA f 0
avs SCN3B Paps
W ﬁw‘!ﬁll@i St

ICRA’14 (With Rus, Paul and Newman) 30




' Video (32X)
|

330 points

(¥ point

Raw GPS Points Coreset Segment






Example Coresets

 Graph/Vector Summarization

« LSA/PCA/SVD NIPS’16

e k-Means , SDM’16

* Non-Negative Matrix Factorization | KDD15
* Robots Localization ICRA’15

* Robots Coverage ICRA’13

e Segmentation NIPS 14

* Dictionary Learning and Image Denoising
J. of Math. Image & Vision, 12

* Mixture of Gaussians NIPS'11

* k-Line Means FOCS'06

33



Coreset for robotics (video)



Mean Queries
2 |nput; P in RY




Mean Queries
2 |nput; P in RY
2 Query: a point g 2 R




Mean Queries
2 |nput; P in RC
2 Query: a point 2 R

e Output: f(P,q) = Z (dist(p, q))2
peP

e~

e U




Coreset For Mean Queries

1, 7
dist(p;a) = kpi ok’
= kpk® + kak® i 2p ¢qg

kok2 + kol 2q¢  p
p2P p2 P p2 P



Coreset For Mean Queries

| .. %2
“ dist(p;g) * = kpi ok’

kpk® + kagk® | 2p ¢q

z a Id|St(p’ q)\l'z — kpk2 + ” Hk(:]kz | 2q ¢I\ P

p2 P p2 P p2 P

/\

Problem: compute a small weighted
subset deterministically.
[ICML'17, with Rus and Ozer]



Relation to Google’s PageRank

Input: Binary adjacency matrix G of a graph.

Scale every column to have sum of 1

(G is now a stochastic matrix)

Let d = 0.85 to get a positive stochastic matrix:

A=d+G+(1-d)-1

There is a distribution x such that Ax = x
(Perron—Frobenius theorem)

Bx =0forB=A—1

Output: x (PageRank vector)

40



Relation to Google’s PageRank

Input: Binary adjacency matrix G of a graph.

Scale every column to have sum of 1

(G is now a stochastic matrix)

Let d = 0.85 to get a positive stochastic matrix:

A=d+G+(1-d)-1

There is a distribution x such that Ax = x
(Perron—Frobenius theorem)

Bx =0forB=A—1

Output: x (PageRank vector)

Core-set: a sparse x' such that HBx’H < €

41



Common Localization of quadcopter

* Many sensors:
GPS, Kinect, GoPro, LIDAR, IMU, Sonar

e Good:
Easy to hover and navigate

e Bad:
- Dangerous, expensive, heavy
- Hard to compare & analyze

Dan Feldman dannyf@csail.mit.edu



Our Robotics & Big Data lab

 Toy-drones, no sensors or tiny analog camera

* Good:
- Safe for indoor navigation, and low-cost
- Easy to model

e Bad:
- Unstable
- Need ~ 30 location updates per second
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Challenge: use weak hardware

Sony PlayStation Eye Camera (Bulk Packaging)
by Sony
Platform : Sony PSP

o o ~ 288 customer reviews

Price: $4.75 & FREE Shipping on orders over $49. Details
+ $0.00 estimated tax

Only 16 left in stock.
Want it tomorrow, June 8?2 Order within 7 hrs 56 mins and choose One-Da)
Sold by Park Deals and Fulfilled by Amazon.

» PlayStation Eye PS3 USB Camera - Black

26 new from $0.01 16 used from $0.52 2 collectible from $1.94

More in Video Games

08

Best Sellers in Video Video Game
Games Accessories

Using stronger algorithms



Exact Translation Recovery
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Exact Translation Problem

i
* ;f;j&
1 - P + t
%o Q
*
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P



Exact Translation Recovery

&;pi;tﬂ Solution:
t = — ’
d1 — P1 ﬁif;j:t t =q1 — P
& $
‘KEPAL Q - P + t



Noisy Observations

* ok
5o

Q
*

Added Gaussian noise
due to:

- Low resolution

- Few Frames Per
Second (FPS)

Latency (delay)

- Communication errors
Camera Tilting



Translation Estimation

Added Gaussian noise

‘15 due to:
3 Q - Low resolution
‘i' 3{ - Few Frames Per

Second (FPS)

Latency (delay)

- Communication errors
Camera Tilting

P -
P+ t~0

S
=
1



Translation Estimation

<%

P+t

p3+t

d1

Pa +t

Compute a translation
t of P that minimizes
the sum of squared
distances to Q

n

min Z dist?(p; + t, ;)

t
=1



() = Translation & Rotation of P

The object not
only moves, but
also rotates in
space



The Pose-Estimation Problem

q1

ds ¥
x %,

Rotation
44 Q Matrix
x R

A rotation corresponds to a

rotation matrix R in R%*%:

P—R-P—R-P+t Cli:RPi‘l‘t



The Pose-Estimation Problem

translation ¢ . Compute Rotation & Translation
e 0 of P that minimizes its sum of
. squared distances to O :
R - P1 + t */ 4
R-p;+t /

R-P+t rtlrliandiStZ(R. p; +t,q;)
R

Rotation
Matrix
R

n




Matching & Pose-Estimation

Matching of each p; to its g; is also unknown.

Needs to compute a permutation
1T {1, coe ,n} — {1, coe ,n}
where p; is assigned to g

55



Matching & Pose-Estimation

Compute Permutation, Rotation & Translation of P
that minimizef'i, its sum of squared distances to Q :

. . .2
7%1,111? Z dist (R - pi + L, Qn(i))
=1

dr(1)
dr(2)
dn(3)
R-p+t Qrc(4)

t 56

R -py




Existing Solutions

Optimal Translation is simply the mean

Let UDVT be a Singular Value Decomposition (SVD)
of the matrix PT Q. That is:
UDVT = PTQ

Theorem 1 (Kabsch algorithm).

The matrix R* = VU is the optimal rotation

and can be computed in 0(nd?) time.



Core-set For Pose Estimation
Observed
ordered set
0 (now) of n
markers

B1

* i
*

P3
"k
P

Ordered set |P| of n markers.
Initial position of object.



Core-set For Pose Estimation

A weight vector wy, -+, w,, = 0 whose most
entries are zeroes and for every R and t:

n n
2 dist?(R - p; +t,q;) = z widist?(R - p; + t,q;)
i=1 =1
*x Q

*/ 3



The Pose-Estimation Problem

“Full version”

Matching. Assuming P is an initial set of n markers (points in R%),
and Q is the observed set of markers, we need to match each point in

P to it’s corresponding point in Q.

0(n!) Permutations




Main Theorem [S. Nasser, |. Jubran, F]

Every set of n points has a core-set of size 0(d?) that

can be computed in O(nd) time.
z dist?(R- p; + t,q;) =

o 2
z dist?(R - p; + t,q;) ‘Z' Q
i=1

*/ 3



Off-line solution

Optimal rotation:

n
R =VUT where SVD (2 i qi) = UpvT

=1
n n
— E T, _— E ~
A3x3 — Pi 4i = Ai3x3 —
=1 =1

s

[
[

ai1x9
l



Solving the Problem cont.

n
A3x3 — A1x9 L= 1a11x9 Zl 1 Wi al1x9

Aiz,z = 4 Coreset



For every matrix A there is a diagonal matrix W

of only d? non-zeros entries such that for every
x € R4

[|Ax|| = |[WAx]|

Proof: HAxHZ = xT(ATA)x = xT(X; a;a] )x

xT(X; wia;af )x

=xT(ATWTWA)x = ||[WAx||’



Intuition (d = 2)




If a point x lies in the convex hull of a
set, there is a subset consisting of at
most d + 1 points such that x lies in the
convex hull of P'.

Caratheodory’s

Theorem




X d=2
‘ wi=1/n
w; =1/n ! /

1/n (1)2=1/n

Caratheodory’s

Theorem

(lHlustration)

ws =1/n w3 =1/n

wys=1/n




Caratheodory’s

Theorem

(lHlustration)

w, = 1.2824



Pose Estimation Time - Number of Points

Pose Estimation Time - Dimension of Points

and Pose Estimation ti Number of Points.
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Average Error [Degree]
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Example









1) Initialize
2) Farthest Point

3) New Center / T




1) Initialize
2) Farthest Point
3) New Center

4) Repeat )/ s _\-\
\ \/
/

e




1) Initialize

2) Farthest Point
3) New Center
4) Repeat

y - \.\
\./ \\/

e




1) Initialize
2) Farthest P

3) New Center T T—
4) Repeat / o

In the ith iteratio

The erroris<1/i




Open Problems

More Coresets

- Deep learning, Topological Data, Sparse data

- 3D Navigation and Mapping, Robotics
Sensor Fusion (GPS+Video+Audio+Text+..)
Private Coresets,

* For biometric face database (with R. Osadchy)
Coresets for Cybersecurity (with S. Goldwasser)
Generic software library

- Coresets on Demand on the cloud



Thank you




Theorem
Suppose that

cost(P,q) = z w(p)dist(p, q)

pEP
where dist: P X Q — [0, o0).

A sample C € P from the distribution

dist(p,q)
Yo dist(p’, q)

sensitivity(p) = me%x

dimension of

is a coreset if |C| > 2. 2.p sensitibity (p)

€2



Theorem
Suppose that

cost(P,q) = z w(p)dist(p, q)

pEP
where dist: P X Q — [0, o0).

A sample C € P from the distribution

dist(p,q)
Yo dist(p’, q)

sensitivity(p) = me%x

dimension of

is a coreset if |C| > 2. 2.p sensitibity (p)

€2



Surprising Applications

1.(1-epsilon) approximations:
Heuristics work better on coresets

2.Running constant factor on epsilon-
coresets helps

3.Coreset for one problem is good for
a lot of unrelated problems

4.Coreset for O(1) points

82



Implementation

 The worst case and sloppy (constant) analysis is not
so relevant

* InThoery:
a random sample of size 1 /¢ yields (1 + ¢€)
approximation with probability at least 1 — 6.
In Practice:
Sample s points, output the
approximation € and its distribution

* Never implement the algorithm as explained in the
paper.

83
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Coreset for k-means

Coreset for k-means can be computed by
choosing points from the distribution:

dist(p,q™) 1
2y dist(pr,q*) Ny
q" = k-means of P

sensitivity(p) =

n, = number of points in the cluster of p

k-d
|Cl=—

€2



Coreset for k-means

Coreset for k-means can be computed by
choosing points from the distribution:

dist(p,q™) 1
Zpl dist(p’,q*) Ny
q* = k-means of P or approximation [SoCg07, Feldma, Sharir, Fiat]

sensitivity(p) =

n, = number of points in the cluster of p

k-d
|Cl=—

€
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|IC|= é\;g k.(g) [SODA’13, Feldman, Schmidt, ..]
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Coreset for k-means

Coreset for k-means can be computed by
choosing points from the distribution:

dist(p,q™) 1
Zpl dist(p’,q*) Ny
q* = k-means of P or approximation [SoCg07, Feldma, Sharir, Fiat]

sensitivity(p) =

n, = number of points in the cluster of p

k
|IC|= é\;g k.(g) [SODA’13, Feldman, Schmidt, ..]
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The chicken-and-egg problem

1. We need approximation to compute the
coreset

2. We compute coreset to get a fast
approximation to a problem

Lee-ways:
|. Bi-criteria approximation
ll. Heuristics
lll. polynomial time reduced to linear time
by the merge-reduce tree
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