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Forge links between:

•Computational Geometry

•Core-sets

•Machine Learning of Big Data

•Robotics

Challenges of this talk
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Forge links between:

•Approximated Caratheodory
Theorem

•Core-sets for mean queries

•Google’s PageRank

•Real time pose estimation

Challenges of this talk



Big Data

• Volume: huge amount of data points

• Variety: huge number of sensors 

• Velocity:  data arrive in real-time streaming

Need:

• Streaming algorithms (use logarithmic memory)

• Parallel algorithms (use networks, clouds)

• Simple computations (use GPUs)

• No assumption on order of points



Big Data Computation model
• = Streaming + Parallel computation

• Input: infinite stream of vectors

• 𝑛 = vectors seen so far

• ~log 𝑛 memory

• M processors

• ~log (n)/M insertion time per point

(Embarrassingly parallel) 
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Challenge:
Find RIGHT data from Big Data
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Given data D and Algorithm A with A(D)
intractable, can we efficiently reduce 
D to C so that A(C) fast and A(C)~A(D)?  

Provable guarantees on approximation 
with respect  to the size of C



Naïve Uniform Sampling (RANSAC)
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Naïve Uniform Sampling

Small cluster 
is missed

Sample a set U of m points uniformly
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Coreset for Image Denoising

• Existing de-noising algorithms works only on 
small (low-definition) images off-line

• For HD or real-time streaming: 
Use random sampling (RANSAC)

[F, Feigin , Sochen [SSVM’13] 
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RANSAC will not find rare but 
important parts



From Big Data to Small Data

Suppose that we can compute such a corset 𝐶 of size 
1

𝜖
for every set 𝑃 of n points

• in time 𝑛3,
• off-line, non-parallel, non-streaming algorithm  
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Read the first 
2

𝜖
streaming points and reduce them 

into 
1

𝜖
weighted points in time 

2

𝜖

5

1 + 𝜖 corset for 𝑃1



Read the next 
2

𝜖
streaming point and reduce them 

into 
1

𝜖
weighted points in time 

2

𝜖

5

1 + 𝜖 corset for 𝑃21 + 𝜖 corset for 𝑃1



Merge the pair of 𝜖-coresets into an 𝜖-corset 

of 
2

𝜖
weighted points

1 + 𝜖-corset for 𝑃1 ∪ 𝑃2



Delete the pair of original coresets from memory

1 + 𝜖-corset for 𝑃1 ∪ 𝑃2



Reduce the
2

𝜖
weighted points into 

1

𝜖
weighted 

points by constructing their coreset

1 + 𝜖-corset for 𝑃1 ∪ 𝑃2

1 + 𝜖-corset for



Reduce the
2

𝜖
weighted points into 

1

𝜖
weighted 

points by constructing their coreset

1 + 𝜖-corset for 𝑃1 ∪ 𝑃2

1 + 𝜖-corset for

= 1 + 𝜖 2-corset for 𝑃1 ∪ 𝑃2



1 + 𝜖 2-corset for 𝑃1 ∪ 𝑃2

1 + 𝜖 -corset for 𝑃3



1 + 𝜖 2-corset for 𝑃1 ∪ 𝑃2

1 + 𝜖 -corset for 𝑃3 1 + 𝜖 -corset for 𝑃4



1 + 𝜖 2-corset for 𝑃1 ∪ 𝑃2 1 + 𝜖 -corset for 𝑃3 ∪ 𝑃4



1 + 𝜖 2-corset for 𝑃1 ∪ 𝑃2 1 + 𝜖 2-corset for 𝑃3 ∪ 𝑃4





1 + 𝜖 2-coreset for

𝑃1 ∪ 𝑃2 ∪ 𝑃3 ∪ 𝑃4



1 + 𝜖 3-coreset for

𝑃1 ∪ 𝑃2 ∪ 𝑃3 ∪ 𝑃4





Parallel Computation



Parallel Computation



Parallel Computation
Run off-line 
algorithm  
on corset 
using single 
computer
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Parallel+ Streaming Computation



30ICRA’14 (With Rus, Paul and Newman)
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Example Coresets

• Graph/Vector Summarization [F, Rus, Ozer]
• LSA/PCA/SVD [F, Rus, and Volkob, NIPS’16]
• k-Means [F, Barger, SDM’16]
• Non-Negative Matrix Factorization [F, Tassa, KDD15]
• Robots Localization [F, Cindy, Rus, ICRA’15]
• Robots Coverage [F, Gil, Rus, ICRA’13]
• Segmentation [F, Rosman, Rus, Volkob, NIPS’14]
• Dictionary Learning and Image Denoising

[F, Sochen, J. of Math. Image & Vision, 12]
• Mixture of Gaussians [F Krause, NIPS’11]
• k-Line Means [F, Fiat, Sharir, FOCS’06]
• …
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Coreset for robotics (video)



M ean Q ueries
² Input: P in Rd



M ean Q ueries
² Input: P in Rd

² Query: a point q 2 Rd

q



M ean Q ueries
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² Query: a point q 2 Rd
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Problem: compute a small weighted 
subset deterministically. 
[ICML’17, with Rus and Ozer]
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Relation to Google’s PageRank
• Input:  Binary adjacency matrix 𝐺 of a graph.
• Scale every column to have sum of 1
• (𝐺 is now a stochastic matrix)

• Let 𝑑 = 0.85 to get a positive stochastic matrix:
𝐴 = 𝑑 ∗ 𝐺 + 1 − 𝑑 ⋅ 𝟏

• There is a distribution 𝑥 such that 𝐴𝑥 = 𝑥
(Perron–Frobenius theorem)

• 𝐵𝑥 = 0 for 𝐵 = 𝐴 − 𝐼
• Output: 𝑥 (PageRank vector)
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Relation to Google’s PageRank
• Input:  Binary adjacency matrix 𝐺 of a graph.
• Scale every column to have sum of 1
• (𝐺 is now a stochastic matrix)

• Let 𝑑 = 0.85 to get a positive stochastic matrix:
𝐴 = 𝑑 ∗ 𝐺 + 1 − 𝑑 ⋅ 𝟏

• There is a distribution 𝑥 such that 𝐴𝑥 = 𝑥
(Perron–Frobenius theorem)

• 𝐵𝑥 = 0 for 𝐵 = 𝐴 − 𝐼
• Output: 𝑥 (PageRank vector)

• Core-set: a sparse 𝑥′ such that 𝐵𝑥′ < 𝜖
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Common Localization of quadcopter

• Many sensors: 
GPS, Kinect, GoPro, LiDAR, IMU, Sonar

• Good:
Easy to hover and navigate

• Bad:
- Dangerous, expensive, heavy
- Hard to compare & analyze



dannyf@csail.mit.eduDan Feldman

Our Robotics & Big Data lab

• Toy-drones, no sensors or tiny analog camera

• Good:
- Safe for indoor navigation, and low-cost
- Easy to model

• Bad:
- Unstable
- Need ~ 30 location updates per second



Expensive Tracking System



Challenge: use weak hardware

Using stronger algorithms



𝑡

𝑝4

𝑝2

𝑝3

𝑝1

𝑃

𝑞1
𝑞2

𝑞3
𝑞4

𝑄

Exact Translation Recovery



𝑄 = 𝑃 + 𝑡

𝑞1 = 𝑝1 + 𝑡
𝑞2 = 𝑝2 + 𝑡

𝑞3 = 𝑝3 + 𝑡
𝑞4=𝑝4 + 𝑡

𝑝2

𝑝3
𝑝4

𝑝1

𝑃

𝑡

Exact Translation Problem



𝑄 = 𝑃 + 𝑡

𝑞1 = 𝑝1 + 𝑡
𝑞2 = 𝑝2 + 𝑡

𝑞3 = 𝑝3 + 𝑡
𝑞4=𝑝4 + 𝑡

𝑡 = 𝑞1 − 𝑝1

𝑝2

𝑝3
𝑝4

𝑝1

𝑃

Exact Translation Recovery

𝑡 = 𝑞1 − 𝑝1
Solution: 



𝑝2

𝑝3
𝑝4

𝑝1

𝑃

𝑞1
𝑞2

𝑞3
𝑞4

𝑄

Noisy Observations

Added Gaussian noise 
due to:
- Low resolution
- Few Frames Per 

Second (FPS)
- Latency (delay)
- Communication errors
- Camera Tilting



𝑡

𝑝4

𝑝2

𝑝3

𝑝1

𝑃

𝑞1
𝑞2

𝑞3
𝑞4

𝑄

Added Gaussian noise 
due to:
- Low resolution
- Few Frames Per 

Second (FPS)
- Latency (delay)
- Communication errors
- Camera Tilting

𝑃 + 𝑡 ~ 𝑄

Translation Estimation



𝑡

𝑝4 +𝑡

𝑝2 +𝑡

𝑝3 + 𝑡

𝑝1 + 𝑡

𝑃 + 𝑡

𝑞1
𝑞2

𝑞3
𝑞4

𝑄
Compute a translation 
𝑡 of 𝑃 that minimizes 
the sum of squared 
distances to Q

min
𝑡

෍

𝑖=1

𝑛

dist2 𝑝𝑖 + 𝑡, 𝑞𝑖

Translation Estimation



𝑝2

𝑝3
𝑝4

𝑝1

𝑃

The object not 
only moves, but 
also rotates in 
space

𝑄 = Translation &  Rotation of 𝑃



𝑝2

𝑝3
𝑝4

𝑝1

𝑃

𝑞1

𝑞2

𝑞3

𝑞4 𝑄

𝑅 ⋅ 𝑃 𝑅 ⋅ 𝑃 + 𝑡

The Pose-Estimation Problem

A rotation corresponds to a 

rotation matrix 𝑅 in ℝ𝑑×𝑑:

𝑞𝑖 = 𝑅𝑝𝑖 + 𝑡

𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛
𝑀𝑎𝑡𝑟𝑖𝑥

𝑹



translation 𝑡

𝑅 ⋅ 𝑝4 +𝑡

𝑅 ⋅ 𝑝2 +𝑡

𝑅 ⋅ 𝑝3 + 𝑡

𝑅 ⋅ 𝑝1 + 𝑡

𝑅 ⋅ 𝑃 + 𝑡

𝑞1
𝑞2

𝑞3
𝑞4

𝑄

𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛
𝑀𝑎𝑡𝑟𝑖𝑥

𝑹

min
𝑡 ,𝑅

෍

𝑖=1

𝑛

dist2 𝑅 ⋅ 𝑝𝑖 + 𝑡, 𝑞𝑖

The Pose-Estimation Problem

Compute Rotation & Translation 
of P that minimizes its sum of 
squared distances to 𝑄 :
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Matching & Pose-Estimation

- Matching of each 𝑝𝑖 to its 𝑞𝑖 is also unknown.

- Needs to compute a permutation 
𝜋: 1,⋯ , 𝑛 → 1,⋯ , 𝑛
where 𝑝𝑖 is assigned to 𝑞𝜋 𝑖

𝑅 ⋅ 𝑝4 +𝑡

𝑅 ⋅ 𝑝2 +𝑡

𝑅 ⋅ 𝑝3 + 𝑡

𝑅 ⋅ 𝑝1 + 𝑡

𝑞?
𝑞?

𝑞?
𝑞?

𝑄
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Matching & Pose-Estimation

Compute Permutation, Rotation & Translation of P
that minimizes its sum of squared distances to 𝑄 :

min
𝜋,𝑡 ,𝑅

෍

𝑖=1

𝑛

dist2 𝑅 ⋅ 𝑝𝑖 + 𝑡, 𝑞𝜋(𝑖)

𝑅 ⋅ 𝑝4 +𝑡

𝑅 ⋅ 𝑝2 +𝑡

𝑅 ⋅ 𝑝3 + 𝑡

𝑅 ⋅ 𝑝1 + 𝑡

𝑞𝜋(1)
𝑞𝜋(2)

𝑞𝜋(3)

𝑞𝜋(4)

𝑄



• Optimal Translation is simply the mean 

• Let 𝑈𝐷𝑉𝑇 be a Singular Value Decomposition (SVD) 

of the matrix 𝑃𝑇𝑄. That is:

𝑈𝐷𝑉𝑇 = PTQ

• Theorem 1 (𝑲𝒂𝒃𝒔𝒄𝒉 𝒂𝒍𝒈𝒐𝒓𝒊𝒕𝒉𝒎 ).

• The matrix 𝑅∗ = 𝑉𝑈𝑇 is the optimal  rotation 

and can be computed in 𝑂 𝑛𝑑2 time.

Existing Solutions



𝑝2

𝑝3
𝑝4

𝑝1

𝑃

Ordered set 𝑃 of 𝑛 markers.
Initial position of object.

Observed 
ordered set 
𝑄 (now) of 𝑛
markers

Core-set For Pose Estimation



Core-set For Pose Estimation

A  weight vector 𝑤1, ⋯ ,𝑤𝑛 ≥ 0 whose most 
entries are zeroes and for every 𝑅 and 𝑡:

𝑅 ⋅ 𝑝2 +𝑡

𝑅 ⋅ 𝑝3 + 𝑡

𝑞2

𝑞3
𝑄

෍

𝑖=1

𝑛

dist2 𝑅 ⋅ 𝑝𝑖 + 𝑡, 𝑞𝑖 =෍

𝑖=1

𝑛

widist
2 𝑅 ⋅ 𝑝𝑖 + 𝑡, 𝑞𝑖



The Pose-Estimation Problem

“Full version”

Matching. Assuming 𝑃 is an initial set of 𝑛 markers (points in 𝑅𝑑), 

and 𝑄 is the observed set of markers, we need to match each point in 

𝑃 to it’s corresponding point in 𝑄. 

𝑂 𝑛! 𝑃𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑠



Every set of 𝑛 points has a core-set of size 𝑂 𝑑2 that

can be computed in 𝑂 𝑛𝑑 time.

Main Theorem [S. Nasser, I. Jubran, F]

𝑅 ⋅ 𝑝2 +𝑡

𝑅 ⋅ 𝑝3 + 𝑡

𝑞2

𝑞3
𝑄

෍

𝑖=1

𝑛

dist2 𝑅 ⋅ 𝑝𝑖 + 𝑡, 𝑞𝑖 =

෍

𝑖=1

𝑛

widist
2 𝑅 ⋅ 𝑝𝑖 + 𝑡, 𝑞𝑖



Off-line solution

 Optimal rotation:

෠𝑅 = 𝑉𝑈𝑇 𝑤ℎ𝑒𝑟𝑒 𝑆𝑉𝐷 ෍

𝑖=1

𝑛

𝑝𝑖
𝑇𝑞𝑖 = 𝑈𝐷𝑉𝑇

𝐴3𝑥3 =෍

𝑖=1

𝑛

𝑝𝑖
𝑇𝑞𝑖 =෍

𝑖=1

𝑛

𝐴𝑖3𝑥3 ෥=෍

𝑖=1

𝑛

𝑎𝑖1𝑥9
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Solving the Problem cont.

 𝐴3𝑥3 ෥= 𝐴1𝑥9 = σ𝑖=1
𝑛 𝑎𝑖1𝑥9 = σ𝑖=1

𝑘 𝜔𝑖𝑎𝑖1𝑥9

Coreset𝑎𝑖3𝑥3 ෥= 𝑎𝑖1𝑥9
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Matrix Approximation by rows subset

For every matrix A there is a diagonal matrix W

of only 𝒅𝟐 non-zeros entries such that for every

𝒙 ∈ 𝑅𝒅

𝑨𝒙 = | 𝑾𝑨𝒙 |

Proof: 𝐴𝑥
2
= 𝑥𝑇 𝐴𝑇𝐴 𝑥 = 𝑥𝑇 σ𝑖 𝑎𝑖𝑎𝑖

𝑇 𝑥

= 𝑥𝑇 σ𝑖𝑤𝑖𝑎𝑖𝑎𝑖
𝑇 𝑥

=𝑥𝑇 𝐴𝑇𝑊𝑇𝑊𝐴 𝑥 = 𝑊𝐴𝑥
2



Intuition (𝑑 = 2)
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Caratheodory’s 

Theorem

If a point 𝑥 lies in the convex hull of a 

set, there is a subset consisting of at 

most 𝑑 + 1 points such that 𝑥 lies in the 

convex hull of 𝑃′.

𝑑 = 2



Caratheodory’s 

Theorem

(Illustration)

𝑑 = 2

Y

X

𝜔6 = 1/𝑛

𝜔7 = 1/𝑛
𝜔1 = 1/𝑛

𝜔2 = 1/𝑛

𝜔3 = 1/𝑛

𝜔4 = 1/𝑛

𝜔5 = 1/𝑛

(320,249)



Caratheodory’s 

Theorem

(Illustration)

𝑑 = 2

Y

X

𝜔6 = 1.8657

𝜔5 = 0

𝜔1 = 2.1218

𝜔2 = 0

𝜔3 = 0

𝜔4 = 1.2824

𝝎𝟕 = 𝟎

(320,249)







Example
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1) Initialize
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1) Initialize          

2) Farthest Point
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1) Initialize          

2) Farthest Point

3) New Center
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1) Initialize          

2) Farthest Point

3) New Center

4) Repeat
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1) Initialize          

2) Farthest Point

3) New Center

4) Repeat
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1) Initialize          

2) Farthest Point

3) New Center

4) Repeat

In the 𝑖th iteration 

The error is < 1/𝑖

77



Open Problems

• More Coresets 

- Deep learning, Topological Data, Sparse data

- 3D Navigation and Mapping, Robotics

• Sensor Fusion (GPS+Video+Audio+Text+..) 

• Private Coresets, [STOC’11, with Fiat et al.]

• For biometric face database (with R. Osadchy)

• Coresets for Cybersecurity (with S. Goldwasser)

• Generic software library

- Coresets on Demand on the cloud
78
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• More Coresets 

- Deep learning, Decision trees, Sparse data

- 3D Navigation and Mapping, Robotics

• Sensor Fusion (GPS+Video+Audio+Text+..) 

• Private Coresets, [STOC’11, with Fiat et al.]

• Coresets for Cybersecurity 
(with A. Akavia,  S. Goldwasser)

• Generic software library

- Coresets on Demand on the cloud

79

Thank you !



Theorem [Feldman, Langberg, STOC’11]

A sample 𝐶 ⊆ 𝑃 from the distribution

sensitivity p = max
𝑞∈𝑄

𝑑𝑖𝑠𝑡(𝑝, 𝑞)

σ𝑝′𝑑𝑖𝑠𝑡(𝑝′, 𝑞)

is a coreset if 𝐶 ≥
dimension of 𝑄

𝜖2
⋅ σ𝑝 sensitibity(𝑝)

Suppose that 

cost 𝑃, 𝑞 ≔ ෍

𝑝∈𝑃

𝑤 𝑝 dist 𝑝, 𝑞

where dist: 𝑃 × 𝑄 → 0,∞ .



Theorem [Feldman, Langberg, STOC’11]

A sample 𝐶 ⊆ 𝑃 from the distribution

sensitivity p = max
𝑞∈𝑄

𝑑𝑖𝑠𝑡(𝑝, 𝑞)

σ𝑝′𝑑𝑖𝑠𝑡(𝑝′, 𝑞)

is a coreset if 𝐶 ≥
dimension of 𝑄

𝜖2
⋅ σ𝑝 sensitibity(𝑝)

Suppose that 

cost 𝑃, 𝑞 ≔ ෍

𝑝∈𝑃

𝑤 𝑝 dist 𝑝, 𝑞

where dist: 𝑃 × 𝑄 → 0,∞ .
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Surprising Applications

1.(1-epsilon) approximations:
Heuristics work better on coresets

2.Running constant factor on epsilon-
coresets helps

3.Coreset for one problem is good for 
a lot of unrelated problems

4.Coreset for O(1) points
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Implementation 

• The worst case and sloppy (constant) analysis is not 
so relevant

• In Thoery:
a random sample of size 1/𝜖 yields (1 + 𝜖)
approximation with probability at least 1 − 𝛿.
In Practice: 
Sample s points, output the 
approximation 𝜖 and its distribution

• Never implement the algorithm as explained in the 
paper.
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Coreset for k-means
[Feldman, Sohler, Monemizadeh, SoCG’07]

Coreset for 𝑘-means can be computed by 
choosing points from the distribution:

sensitivity(𝑝) = 
𝑑𝑖𝑠𝑡(𝑝,𝑞∗)

σ𝑝′ 𝑑𝑖𝑠𝑡(𝑝′,𝑞
∗)
+

1

𝑛𝑝

𝑛𝑝 = number of points in the cluster of p

𝑞∗ = k-means of P

|C|=
𝑘⋅𝑑

𝜖2



Coreset for k-means
[Feldman, Sohler, Monemizadeh, SoCG’07]
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The chicken-and-egg problem

1. We need approximation to compute the
coreset

2. We compute coreset to get a fast 
approximation to a problem

Lee-ways: 
I. Bi-criteria approximation
II. Heuristics
III. polynomial time reduced to linear time 
by the merge-reduce tree


