

<section-header><section-header><section-header><list-item>

Properties of Jungles

- Limited memory consumption
 - e.g. by specifying a width at each layer in the DAG
- Potentially improved generalization
 - fewer parameters
 - less "dilution" of training data

Jungles: Optimization Algorithm

- Allocate a maximum of $M = |N\downarrow c|$ nodes per level
 - allows us to fix memory budget
- · Simple "move-making" optimization algorithm
 - start from "feasible" initialization
 - randomly choose a parent node
 - either update its split function (given fixed DAG structure)
 - or update its left or right branch (given fixed split function)

Entangled geodesic forests for semantic segmentation

Algorithm	Jaccard	· • 4 • •			
		0 4 0	Input		
Conventional Classification Forest	53.2				
Classification forest + (CRF)	68.3	Con and			
Auto-context classification forest	65.9				
Entangled classification forest	58.3				
Auto-context geodesic forests	69.2				
Entangled geodesic forests	72.3	1 A. S.	• 12		
		Ground truth O	Ground truth Our result		

Clinical motivation

Patient-specific coordinate system

- Guided visualization/navigation in diagnostic tools
- Longitudinal assessment after surgical Intervention
- Shape/population analysis for disease modelling

Learned image super-resolution

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Goal

Original

Downsampled

learning to predict the value of the high-res voxels from the low-res voxels.

- -Training data can be easily obtained
- -Well defined accuracy measure

