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Forests and Jungles for  
Medical Image Analysis 

Overview 

• A brief introduction to machine learning 

• Decision forests and jungles 

• Applications in medical image analysis 
•  Anatomy localization 
•  Anatomy segmentation 
•  Spine detection 
•  Brain tumour segmentation 
•  Learned super-resolution 
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Training 
algorithm 

Training data set 

structure & parameters 

Learned model (classifier) 

Training phase (usually offline) 

Supervised Machine Learning (classification) 
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Supervised Machine Learning (classification) 

Input test data point 

structure + parameters 

Learned model (classifier) 

predicted class label 

Output 

measurements (features) only 

Test phase (run time, online) 

Data representation, feature vectors and data points 
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Feature vector 
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Data representation, feature vectors and data points 

Features in 2D space 

induction 

Application: Kinect body part recognition 

Input test depth image Body part segmentation 

image measurements 
made relative to pixel 

classifier per-pixel prediction 
of class label 

e.g. depth, color, neighbors 

Task: assigning body part labels to each pixel in Kinect depth images g gg y ppp p

J. Shotton, R. Girshick, A. Fitzgibbon, T. Sharp, M. Cook, M. Finocchio, R. Moore, P. Kohli, A. Criminisi, A. Kipman, 
and A. Blake, Efficient Human Pose Estimation from Single Depth Images, in Trans. PAMI, IEEE, 2012 
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Overview 

• A brief introduction to machine learning 

• Decision forests and jungles 

• Applications in medical image analysis 
•  Anatomy localization 
•  Anatomy segmentation 
•  Spine detection 
•  Brain tumour segmentation 
•  Learned super-resolution 

A. Criminisi and J. Shotton, Decision Forests for Computer Vision and 
Medical Image Analysis, Springer, February 2013 
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Toy Learning Example 

•  Try several lines, chosen at random 

•  Keep line that best separates data 
•  information gain 

•  Recurse 
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•  Used to decide which candidate split function is best 

•  Typically an “information gain” – a very general and flexible formulation 

entropy of 
examples 
at parent 
node 
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examples 
at child nodes 

Training objective function 

weighting 
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Examples of split functions 

“Axis aligned” “Oriented line” “Conic section” 

Particularly efficient 

0 

1 2 

3 4 

Decision trees: test time prediction 
test input data 

prediction 
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Decision forests 

Forest prediction is an aggregate of the predictions across all trees (e.g. average probability) 

Aggregating tree predictions 
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D
=5
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Weak learner: axis aligned Weak learner: oriented line Weak learner: conic section Weak learner: axis alignedWeak learner: axis aligned Weak learner: oriented lineWeak learner: oriented line Weak learner: conic sectionWeak learner: conic section 

Effect of tree depth and randomness 

A. Criminisi and J. Shotton, Decision Forests for Computer Vision and 
Medical Image Analysis, Springer, February 2013 

Code available! 

Overview 

• A brief introduction to machine learning 

• Decision forests and jungles 

• Applications in medical image analysis 
•  Anatomy localization 
•  Anatomy segmentation 
•  Spine detection 
•  Brain tumour segmentation 
•  Learned super-resolution 

J. Shotton, T. Sharp, P. Kohli, S. Nowozin, J. Winn, and A. Criminisi, Decision 
Jungles: Compact and Rich Models for Classification, in Proc. NIPS, 2013 
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The Memory Issue 

•  Given enough data, trees grow exponentially with depth 

•  Training deeper trees on enough data gives higher test accuracy 

•  Several real applications (e.g. Kinect) have “infinite” data available 

•  Memory concerns practically limit accuracy of decision trees 

Node Merging 
•  Could we find a way to merge similar nodes together? 

•  Change from a tree to a rooted directed acyclic graph (DAG) 
•  same structure, except that nodes can have multiple parents 
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Decision Jungles 
•  A “jungle” is an ensemble of rooted decision DAGs 

•  just as a “forest” is an ensemble of trees 
 

•  We train each DAG layer by layer, jointly optimizing both 
•  the structure of the DAG 
•  the split node features 

� 

Properties of Jungles 

• Limited memory consumption 
•  e.g. by specifying a width at each layer in the DAG 

• Potentially improved generalization 
•  fewer parameters 
•  less “dilution” of training data 
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E.g. classifying images of cows, sheep and grass 

Training data 
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A simplistic feature space 
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Too many model parameters: overfitting 

Tree 
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Node merging 
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Correct generalization: grass 
 
capturing illumination invariance 

brightness 

ch
ro

m
at

ic
ity

 

DAG 

2 

grass 

grass 

cow 

sheep 

cowcow 

c s g 

c s g 

c s g 

c s g c s g c s g 

Training 
patches 

c s g 

0 

1 

3 4 5
� 



��������

���

Jungles: Training Objective 

features and branches 
for all parent nodes �  sum over 

child nodes �  

entropy of 
examples that 

reach child node �  

number of 
examples at �  

Jungles: Optimization Algorithm 

• Allocate a maximum of ��� ���	
� nodes per level 
•  allows us to fix memory budget 

• Simple “move-making” optimization algorithm 
•  start from “feasible” initialization 
•  randomly choose a parent node 
•  either update its split function (given fixed DAG structure) 
•  or update its left or right branch (given fixed split function) 
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Algorithm Overview 
• Train each DAG layer by layer, jointly optimizing both 

•  the structure of the DAG 
•  the split node features themselves 

Q F R GParent layer 

Child layer 

<- Graph structure 

<- Split node features 

Current objective score = 2.87 
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Q F R GParent layer 

Child layer 

<- Graph structure 

<- Split node features 

Current objective score = 2.52 
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Q F P GParent layer 

Child layer 

<- Graph structure 

<- Split node features 

Current objective score = 2.12 
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Q F P GParent layer 

Child layer 

<- Graph structure 

<- Split node features 

Current objective score = 1.72 
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Q F P GParent layer 

Child layer 

<- Graph structure 

<- Split node features 

Current objective score = 1.59 

Algorithm Overview 
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<- Graph structure 
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•  the split node features themselves 



��������

���

Z F P GParent layer 

Child layer 

<- Graph structure 

<- Split node features 

Current objective score = 1.44 

Algorithm Overview 
• Train each DAG layer by layer, jointly optimizing both 

•  the structure of the DAG 
•  the split node features themselves 

Z F P GParent layer 

Child layer 

<- Graph structure 

<- Split node features 

Current objective score = 1.44 

Algorithm Overview 
• Train each DAG layer by layer, jointly optimizing both 

•  the structure of the DAG 
•  the split node features themselves 
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Jungles: Results – accuracy vs. memory 

Jungles: Results – accuracy vs. compute time 
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Jungles: Results – node budget M 

Input 
Image 

Ground 
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Merged DAGs 
Segmentation 

Standard Trees 
Segmentation 

Input 
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Segmentation 

Standard Trees 
Segmentation 
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Overview 

• A brief introduction to machine learning 

• Decision forests and jungles 
 
• Applications in medical image analysis 

•  Anatomy localization 
•  Anatomy segmentation 
•  Spine detection 
•  Brain tumour segmentation 
•  Learned super-resolution 

A. Criminisi, D. Robertson, E. Konukoglu, J. Shotton, S. Pathak, S. White, and K. Siddiqui, 
Regression Forests for Efficient Anatomy Detection and Localization in Computed 
Tomography Scans, in Medical Image Analysis (MedIA), Elsevier, 2013 
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Anatomy Localization in 3D Computed Tomography Scans 
- Direct mapping of  voxels to organ bounding boxes.  
- No search, no sliding window.  
- No atlas registration. 

IInput CT scan Output anatomy localization 

Key idea: each voxel votes (probabilistically) for the position of  each organ’s bounding box. 
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High variability in appearance, shape, location, resolution, noise, pathologies … 

Organ labelling: why is it hard? 
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Different image cropping, noise, contrast/no-contrast, resolution, scanners, body shapes/sizes, patient position… 

Organ labelling: the ground-truth database  

Node split function 

Node optimization 

Node training 

Input data point 

Output  

Error in model fit 

Feature response 

•  EEach voxel  in the volume votes for the position of  the 6 box sides 
•  We wish to learn a set of  ddiscriminative points (landmarks, clusters) 
     which can predict the kidney position with high confidence. 

(voxel position in volume) 

(bound. box continuous pos.) 

(mean over displaced 3D boxes) 

(weighted uncertainty  
for all organs) 

(relative displacement) 

(Gaussian repres. of  distribs) 

Regressing an n-D piece-wise constant model 

Multiple organs  

Organ labelling: regression forest 
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Organ labelling: context-rich visual features 
Possible visual features Computing the feature response 

… 

Capturing spatial context 

Organ labelling: automatic landmark discovery 

                    Input CT scan and detected landmark regions 

Here the system is trained to 
detect left and right kidneys. 

The system learns to use bottom 
of lung and top of pelvis to 
localize kidneys with highest 
confidence. 

Discovery of 
landmark regions 
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Overview 

• A brief introduction to machine learning 

• Decision forests and jungles 
 
• Applications in medical image analysis 

•  Anatomy localization 
•  Anatomy segmentation 
•  Spine detection 
•  Brain tumour segmentation 
•  Learned super-resolution 

P. Kontschieder, P. Kohli, J. Shotton, and A. Criminisi, GeoF: Geodesic 
Forests for Learning Coupled Predictors, in Proc. Computer Vision 
and Pattern Recognition (CVPR), IEEE, June 2013 

Entangled geodesic forests for semantic segmentation 

•  Using soft connectivity features efficiently 
•  Capturing semantic context 
•  No need for Markov-, Conditional Random Field post-processinf 

aorta 

lung 
lung 

air 
air 

air 

aorta 



��������

	��

Entangled geodesic forests for semantic segmentation 

sec 0 sec 0sec 0 

Input 

Tree 0 Tree 0 Tree 0 Tree 1 Tree 1 Tree 1 Tree 2 Tree 2 Tree 2 
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Entangled geodesic forests for semantic segmentation 

Algorithm Jaccard 

Conventional Classification Forest 53.2 

Classification forest + (CRF) 68.3 

Auto-context classification forest 65.9 

Entangled classification forest 58.3 

Auto-context geodesic forests 69.2 

Entangled geodesic forests 72.3 

Input 

Ground truth     Our result 
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Entangled geodesic forests for semantic segmentation 
  Input image   Ground truth          D=15                  D=17                 D=20 

Overview 

• A brief introduction to machine learning 

• Decision forests and jungles 
 
• Applications in medical image analysis 

•  Anatomy localization 
•  Anatomy segmentation 
•  Spine detection 
•  Brain tumour segmentation 
•  Learned super-resolution 
 

B. Glocker, D. Zikic, E. Konukoglu, D. R. Haynor, and A. Criminisi, Vertebrae 
Localization in Pathological Spine CT via Dense Classification from 
Sparse Annotations, in MICCAI 2013, Springer, September 2013 
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Vertebrae Localization and Classification 

Name of this 
vertebra? 

Patient-specific coordinate system 
•  Guided visualization/navigation 

in diagnostic tools 

•  Longitudinal assessment 
after surgical Intervention 

•  Shape/population analysis for 
disease modelling 

Clinical motivation 
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•  Repetitive nature of structures 
•  Variability of normal anatomy 
•  Presence of pathologies 
•  Varying image acquisition 

(FOV, noise level, resolution, �) 

Challenges 

Some results 
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Some results 

Overview 

• A brief introduction to machine learning 

• Decision forests and jungles 
 
• Applications in medical image analysis 

•  Anatomy localization in CT scans 
•  Anatomy segmentation in CT scans 
•  Spine detection in CT scans 
•  Brain tumour segmentation in MR scans 
•  Learned super-resolution in diffusion MRI 
 

D. Zikic, B. Glocker, E. Konukoglu, A. Criminisi, J. Shotton, C. Demiralp, O. Thomas, T. 
Das, R. Jena, and S. Price, Decision Forests for Tissue-specific Segmentation of 
High-grade Gliomas in Multi-channel MR, in MICCAI 2012, Springer, October 2012 
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Segmentation of  
tumorous tissues: 
 
 
 
 
 

 
 
 
 

 
---- Active cells 
---- Necrotic core 
---- Edema 
---- Background 
 

3D MRI input data 

T1-gad T1 

T2 

DTI-p 

FLAIR 

DTI-q 

Automatic Segmentation of Brain Tumour 

Tumour 
Tissue 
Classification 

Training a Pixel-Wise Forest Classifier 
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New Patient,  
previously unseen 

Tumour 
Tissue 
Classification 

Testing the Pixel-Wise Forest Classifier 

1st  Step: Obtain Expert Segmentation 1st Step: Obtain Expert Segmentation

Building the Training Database of Patients’ Images 
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Building the Training Database of Patients’ Images ding the Training Database of Patients  Ima
1st  Step: Obtain Expert Segmentation 

1st  Step: Obtain Expert Segmentation 1st Step: Obtain Expert Segmentation

Building the Training Database of Patients’ Images 
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Glioblastoma Segmentation 
patient 1  patient 2  patient 3  patient 4  patient 5  

Glioblastoma Segmentation: results 



��������

���

Overview 

• A brief introduction to machine learning 

• Decision forests and jungles 

• Applications in medical image analysis 
•  Anatomy localization 
•  Anatomy segmentation 
•  Spine detection 
•  Brain tumour segmentation 
•  Learned super-resolution 

D. Alexander, D. Zikic, J. Zhang, H. Zhang, and A. Criminisi, Image Quality Transfer via 
Random Forest Regression: Applications in Diffusion MRI, in MICCAI 2014 - Intl 
Conf. on Medical Image Computing and Computer Assisted Intervention, Springer, 2014 

Learned image super-resolution 

Learned voxel predictor 

Low-res diffusion MRI 
(faster acquisition, cheaper) 

High-res diffusion MRI 
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Learned image super-resolution 

Goal 
    learning to predict the value of the high-res voxels 
    from the low-res voxels. 
 
-  Training data can be easily obtained 
-  Well defined accuracy measure 

Learned image super-resolution 
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Learned image super-resolution 

D. Alexander, D. Zikic, J. Zhang, H. Zhang, and A. Criminisi, Image Quality Transfer via 
Random Forest Regression: Applications in Diffusion MRI, in MICCAI 2014 - Intl 
Conf. on Medical Image Computing and Computer Assisted Intervention, Springer, 2014 

Modern, efficient machine learning has  
the potential to revolutionize medicine! 


