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The problem of induction

• In just a few years, babies go from 
knowing very little to building rocket 
ships and twitter accounts. 

• How do people learn so much from so 
little?
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period, during which most rule updating was likely to occur. We used the cIFS subregion 

involved in rule updating during both cue and feedback as the seed region in a psycho-

physiological interaction (PPI) analysis. Connectivity between cIFS and dorsal striatum 

increased during the feedback period (Figure 5A), buttressing our claim that rule 

updating occurs via interactions between the striatum, which we hypothesize represents 

the values of rules, and the cIFS, which other literature suggests maintains and executes 

the most accurate one (Miller and Cohen 2001; Koechlin et al. 2003; Badre and 

D'Esposito 2009). 

 

Figure 5: Rule Updating 

a) Rule updating during the feedback period in the striatum and left cIFS b) Rule 

updating during the subsequent cue period in the left cIFS. c) Projections of a and c onto 
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Figure 1: During the concept learning phase (A) the teacher (above) clicked through a grid of creatures, revealing the labels for
creatures in the train set, while the student (below) waited. During the concept communicating phase (B), the teacher explained
the concept to the student in a chatroom. During the concept testing phase (C), both participants were shown the same grid of
held-out test creatures. Each selected the creatures (yellow) that they believed belonged to the concept. Finally, the participants
were shown their scores for the round (D).

concept, we generated 100 specific creatures, split into 50 for
training and 50 for testing. We ensured some positive exam-
ples of the concept even for very restrictive rules by first ran-
domly selecting 6 positive instances of the concept and then
adding 44 items chosen at random from all remaining items
(i.e., according to the true concept base rate).

Procedure
Every pair of participants was placed in a game, where one
was assigned the role of the “teacher” (initial learner) and
the other was assigned the role of the “student” (secondary
learner). Each game consisted of 5 rounds, each with a new
concept from a new rule. Each of a game’s 5 concepts used a
different creature kind, and each concept was presented with
a different nonce word as the species name. The ordering
of concepts was randomized so that there was no standard
ordering of rule types across the games.

On each round, participants went through three phases:
concept learning, concept communicating, and concept test-
ing (Figure 1). During the concept learning phase, the teacher
was presented a grid of training creatures and was instructed
to click on individual creatures to reveal whether or not they
belonged to the species defined by the concept. Once the
teacher clicked on every creature in the grid, they were pre-
sented a message advising them to review the creatures for
as long as they needed. When the teacher ended the concept
learning phase, they proceeded to the concept communicating
phase, where they entered an online chatroom and were were
instructed to teach the concept to the student. Participants
were provided no additional instructions for the chatroom,
and they were allowed to talk freely. In order to prevent a
teacher from rushing through the chatroom without properly
communicating with their student, only the student was given
the ability proceed to the final concept testing phase. In the

final phase both participants were (separately) given the same
grid of test creatures and asked to tag the creatures that they
believed belonged to the species. Neither participant had ac-
cess to their chatroom messages during this phase.

Once both participants completed concept testing for a
concept, they were provided feedback in the form of their
own and their partner’s score, computed as: # of hits �
# of false alarms. We encouraged them to learn concepts
thoroughly and communicate effectively with a monetary
bonus equal to the sum of both players’ scores (in cents).
Participants were made aware of the task structure and bonus
mechanic prior to starting the first round; they had to answer
5 comprehension questions correctly to begin to the game.

Analysis and Results
Our experiment yielded rich data for exploring whether and
how concepts are learned from language, and how learning
from language compares to learning from examples. We first
examine performance during the concept testing phase for
both the student and teacher participants. We then explore
the time spent learning from each type of evidence. Finally,
we explore the actual language used to teach concepts in the
concept communicating phase.

Concept learning performance
Participants assigned to be the teacher take part in a standard
Boolean concept learning paradigm, and results are in accord
with expectations. The five rule types we used in our ex-
periment cover a range of complexity in terms of description
length (Feldman, 2000), which manifests in variable perfor-
mance in test accuracy across types (Figure 2).

Students have access to the concept only through the lan-
guage conveyed by their partner. The average student ac-
curacy during the concept testing phase should thus be no

f1(x) = 1 ^ f3(x) = 0
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An innate “language of 
thought” in which 

complex concepts can 
be built from simple 

pieces

A powerful learning 
mechanism to go from 
examples to concepts



Concept learning
Medin & Schaffer (1978):

“These are Kweps”

“These are not Kweps” “Is this a Kwep?”



Concept learning

• Graded judgements  • Typicality

• Prototype enhancement

Medin & Schaffer, 1978 (data from Nosofsky, et al.,1994):

%
 F

ep

0.0

0.5

1.0

“These are Kweps” “These are not Kweps”

“Is this a Kwep?”



	

	 33	

period, during which most rule updating was likely to occur. We used the cIFS subregion 

involved in rule updating during both cue and feedback as the seed region in a psycho-

physiological interaction (PPI) analysis. Connectivity between cIFS and dorsal striatum 

increased during the feedback period (Figure 5A), buttressing our claim that rule 

updating occurs via interactions between the striatum, which we hypothesize represents 

the values of rules, and the cIFS, which other literature suggests maintains and executes 

the most accurate one (Miller and Cohen 2001; Koechlin et al. 2003; Badre and 

D'Esposito 2009). 
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Figure 1: During the concept learning phase (A) the teacher (above) clicked through a grid of creatures, revealing the labels for
creatures in the train set, while the student (below) waited. During the concept communicating phase (B), the teacher explained
the concept to the student in a chatroom. During the concept testing phase (C), both participants were shown the same grid of
held-out test creatures. Each selected the creatures (yellow) that they believed belonged to the concept. Finally, the participants
were shown their scores for the round (D).

concept, we generated 100 specific creatures, split into 50 for
training and 50 for testing. We ensured some positive exam-
ples of the concept even for very restrictive rules by first ran-
domly selecting 6 positive instances of the concept and then
adding 44 items chosen at random from all remaining items
(i.e., according to the true concept base rate).

Procedure
Every pair of participants was placed in a game, where one
was assigned the role of the “teacher” (initial learner) and
the other was assigned the role of the “student” (secondary
learner). Each game consisted of 5 rounds, each with a new
concept from a new rule. Each of a game’s 5 concepts used a
different creature kind, and each concept was presented with
a different nonce word as the species name. The ordering
of concepts was randomized so that there was no standard
ordering of rule types across the games.

On each round, participants went through three phases:
concept learning, concept communicating, and concept test-
ing (Figure 1). During the concept learning phase, the teacher
was presented a grid of training creatures and was instructed
to click on individual creatures to reveal whether or not they
belonged to the species defined by the concept. Once the
teacher clicked on every creature in the grid, they were pre-
sented a message advising them to review the creatures for
as long as they needed. When the teacher ended the concept
learning phase, they proceeded to the concept communicating
phase, where they entered an online chatroom and were were
instructed to teach the concept to the student. Participants
were provided no additional instructions for the chatroom,
and they were allowed to talk freely. In order to prevent a
teacher from rushing through the chatroom without properly
communicating with their student, only the student was given
the ability proceed to the final concept testing phase. In the

final phase both participants were (separately) given the same
grid of test creatures and asked to tag the creatures that they
believed belonged to the species. Neither participant had ac-
cess to their chatroom messages during this phase.

Once both participants completed concept testing for a
concept, they were provided feedback in the form of their
own and their partner’s score, computed as: # of hits �
# of false alarms. We encouraged them to learn concepts
thoroughly and communicate effectively with a monetary
bonus equal to the sum of both players’ scores (in cents).
Participants were made aware of the task structure and bonus
mechanic prior to starting the first round; they had to answer
5 comprehension questions correctly to begin to the game.

Analysis and Results
Our experiment yielded rich data for exploring whether and
how concepts are learned from language, and how learning
from language compares to learning from examples. We first
examine performance during the concept testing phase for
both the student and teacher participants. We then explore
the time spent learning from each type of evidence. Finally,
we explore the actual language used to teach concepts in the
concept communicating phase.

Concept learning performance
Participants assigned to be the teacher take part in a standard
Boolean concept learning paradigm, and results are in accord
with expectations. The five rule types we used in our ex-
periment cover a range of complexity in terms of description
length (Feldman, 2000), which manifests in variable perfor-
mance in test accuracy across types (Figure 2).

Students have access to the concept only through the lan-
guage conveyed by their partner. The average student ac-
curacy during the concept testing phase should thus be no
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mechanism to go from 
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Bayes’ rule

• Bayes’ rule tells us what to learn from 
observations, given prior and likelihood.

The probability of a 
hypothesis, h, given 
observed data, d.

The likelihood 
of that data, if 
the hypothesis 

is true.

How much 
we believe the 

hypothesis  
a priori.

P (h|d) / P (d|h) · P (h)
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Rule hypotheses

• We can derive an infinite set of possible 
rules from finite features and simple 
combinations (a grammar).

“It’s a Kwep if it has flat 
head and round wings”
“It’s a Kwep if it has flat 
head and round wings”
“It’s a Kwep if it has flat 
head and round wings”

f1(x) = 1 ^ f3(x) = 0
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Rule prior probability

• Assign a probability to each rule-building 
step (a probabilistic grammar).

• The overall probability of a rule is the 
probability of all choices to make it.

• Longer rules are less likely a priori.
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period, during which most rule updating was likely to occur. We used the cIFS subregion 

involved in rule updating during both cue and feedback as the seed region in a psycho-

physiological interaction (PPI) analysis. Connectivity between cIFS and dorsal striatum 

increased during the feedback period (Figure 5A), buttressing our claim that rule 

updating occurs via interactions between the striatum, which we hypothesize represents 

the values of rules, and the cIFS, which other literature suggests maintains and executes 

the most accurate one (Miller and Cohen 2001; Koechlin et al. 2003; Badre and 

D'Esposito 2009). 
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Figure 1: During the concept learning phase (A) the teacher (above) clicked through a grid of creatures, revealing the labels for
creatures in the train set, while the student (below) waited. During the concept communicating phase (B), the teacher explained
the concept to the student in a chatroom. During the concept testing phase (C), both participants were shown the same grid of
held-out test creatures. Each selected the creatures (yellow) that they believed belonged to the concept. Finally, the participants
were shown their scores for the round (D).

concept, we generated 100 specific creatures, split into 50 for
training and 50 for testing. We ensured some positive exam-
ples of the concept even for very restrictive rules by first ran-
domly selecting 6 positive instances of the concept and then
adding 44 items chosen at random from all remaining items
(i.e., according to the true concept base rate).

Procedure
Every pair of participants was placed in a game, where one
was assigned the role of the “teacher” (initial learner) and
the other was assigned the role of the “student” (secondary
learner). Each game consisted of 5 rounds, each with a new
concept from a new rule. Each of a game’s 5 concepts used a
different creature kind, and each concept was presented with
a different nonce word as the species name. The ordering
of concepts was randomized so that there was no standard
ordering of rule types across the games.

On each round, participants went through three phases:
concept learning, concept communicating, and concept test-
ing (Figure 1). During the concept learning phase, the teacher
was presented a grid of training creatures and was instructed
to click on individual creatures to reveal whether or not they
belonged to the species defined by the concept. Once the
teacher clicked on every creature in the grid, they were pre-
sented a message advising them to review the creatures for
as long as they needed. When the teacher ended the concept
learning phase, they proceeded to the concept communicating
phase, where they entered an online chatroom and were were
instructed to teach the concept to the student. Participants
were provided no additional instructions for the chatroom,
and they were allowed to talk freely. In order to prevent a
teacher from rushing through the chatroom without properly
communicating with their student, only the student was given
the ability proceed to the final concept testing phase. In the

final phase both participants were (separately) given the same
grid of test creatures and asked to tag the creatures that they
believed belonged to the species. Neither participant had ac-
cess to their chatroom messages during this phase.

Once both participants completed concept testing for a
concept, they were provided feedback in the form of their
own and their partner’s score, computed as: # of hits �
# of false alarms. We encouraged them to learn concepts
thoroughly and communicate effectively with a monetary
bonus equal to the sum of both players’ scores (in cents).
Participants were made aware of the task structure and bonus
mechanic prior to starting the first round; they had to answer
5 comprehension questions correctly to begin to the game.

Analysis and Results
Our experiment yielded rich data for exploring whether and
how concepts are learned from language, and how learning
from language compares to learning from examples. We first
examine performance during the concept testing phase for
both the student and teacher participants. We then explore
the time spent learning from each type of evidence. Finally,
we explore the actual language used to teach concepts in the
concept communicating phase.

Concept learning performance
Participants assigned to be the teacher take part in a standard
Boolean concept learning paradigm, and results are in accord
with expectations. The five rule types we used in our ex-
periment cover a range of complexity in terms of description
length (Feldman, 2000), which manifests in variable perfor-
mance in test accuracy across types (Figure 2).

Students have access to the concept only through the lan-
guage conveyed by their partner. The average student ac-
curacy during the concept testing phase should thus be no
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Figure 3. (a) Posterior complexity distribution of the RRDNF model (b=1) for the category structure of Medin & Scha�er (1978), see
Table 3. (b) Posterior feature weights for this category structure. Together these weight distributions indicate that the RRDNF model focuses
on simple rules along features 1 and 3.

Table 3
The category structure of Medin & Scha�er (1978), with the
human data of Nosofsky et al. (1994), and the predictions of
the Rational Rules model (b=1).
Object Feature Values Human RRDNF

A1 0001 0.77 0.82
A2 0101 0.78 0.81
A3 0100 0.83 0.92
A4 0010 0.64 0.61
A5 1000 0.61 0.61
B1 0011 0.39 0.47
B2 1001 0.41 0.47
B3 1110 0.21 0.21
B4 1111 0.15 0.07
T1 0110 0.56 0.57
T2 0111 0.41 0.44
T3 0000 0.82 0.95
T4 1101 0.40 0.44
T5 1010 0.32 0.28
T6 1100 0.53 0.57
T7 1011 0.20 0.13

arable concepts could be harder for human participants to
learn than closely matched concepts which were not lin-
early separable. As an example, consider Medin and Schwa-
nenflugel (1981), Experiment 3, in which participants were
trained on the two concepts shown in Table 4, and tested on
classification accuracy for the training set. Concept LS is
linearly separable, Concept NLS is not, and the two concepts
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Figure 2. Comparison of human judgments with RRDNF model
predictions: mean probability of category A judgments after train-
ing on the category structure of Medin & Scha�er (1978), see Ta-
ble 3, for human and RRDNF model (b=1). The fit between model
and human data is R2=0.98.

have matched single dimension strategies (that is, any sin-
gle feature predicts category membership two thirds of the
time, in each concept). Throughout the experiment learners
make fewer errors on Concept NLS (Fig. 4a). In Fig. 4b we
see that the Rational Rules model provides good qualitative
agreement with the human data, predicting more errors on
the linearly separable concept (and note that no parameters

r = 0.99
(one free param.)

Example: concept learning

• Graded judgments

• Typicality
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enhancement

Goodman, et al. 
(2007, 2008a, 2008b)
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Broader test
• 7 Boolean features.

• 43 randomly generated concepts (3-6 pos. + 2 neg. exs)

• 128 judgements (~122 transfer questions)20 NOAH D. GOODMAN, JOSHUA B. TENENBAUM, JACOB FELDMAN, THOMAS L. GRIFFITHS
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Figure 13. (a) Human categorization response frequency (proportion of “yes” judgments) against model posterior generalization probabil-
ity, R2=0.97; error bars represent standard error of frequency (assuming binomial distribution). (Frequencies are computed by first binning
responses according to model prediction.) (b) The mean of response frequencies (binned according to model prediction) computed for each
run separately; error bars represents standard error of the mean over runs; bars below each data point indicate number of runs contributing
to that bin (scale on right).

model (Love et al., 2004) than they are to representations
in RULEX; conjunctive blocks of RRDNF formulae are anal-
ogous to the clusters that SUSTAIN learns, with features that
are ommitted from a conjunctive clause analogous to fea-
tures that receive low attentional weights in SUSTAIN. All
three of these models—RULEX, SUSTAIN, and RRDNF—
navigate similar issues of representational flexibility, trade-
o�s between conceptual complexity and ease of learning, and
generalization under uncertainty. The main advantages that
Rational Rules o�ers over the other two models come from
its focus on the computational-theory level of analysis and
the modeling power that we gain at that level: the ability
to work with a minimal number of free parameters and still
achieve strong quantitative data fits, the ability to separate
out the e�ects of representational commitments and induc-
tive logic from the search and memory processes that imple-
ment inductive computations, and the ability to seamlessly
extend the model to work with di�erent kinds of predicate-
based representations, such as those appropriate for learning
concepts in continuous spaces, concepts defined by causal
implications (see N. D. Goodman et al., In Press), or con-
cepts defined by relational predicates (see below).

A central theme of our work is the complementary nature
of rule-based representations and statistical inference, and
the importance of integrating these two capacities in a model
of human concept learning. Other authors have written about
the need for both rule-based and statistical abilities—or of-

ten rules and similarity—in concept learning, and cognition
more generally (Sloman, 1996; Pinker, 1997; Pothos, 2005).
The standard approach to combining these notions employs
a “separate-but-equal” hybrid approach: endowing a model
with two modules or systems of representation, one special-
ized for rule-based representations and one for statistical or
similarity-based representations, and then letting these two
modules compete or cooperate to solve some learning task.
The ATRIUM model of Erickson and Kruschke (1998) is a
good example of this approach, where a rule module and a
similarity module are trained in parallel, and a gating module
arbitrates between their predictions at decision time.

We argue here for a di�erent, more unified approach to
integrating rules and statistics. Rules expressed in a flexi-
ble concept language provide a single unitary representation;
statistics provides not a complementary form of representa-
tion, but the rational inductive mechanism that maps from
observed data to the concept language. We thus build on the
insights of Shepard (1987) and Tenenbaum (2000) that the
e�ects of similarity and rules can both emerge from a single
model: one with a single representational system of rule-like
hypotheses, learned via a single rational inductive mecha-
nism that operates according to the principles of Bayesian
statistics.

Goodman, et al (2008)
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• Big online experiment.

• 108 concepts,

• Boolean (circle or red)

• Context-dependent (“Determiners”)  
(unique largest , exists another with same shape)

• 2 orders per concept,

• 1596 participants. Piantadosi, Goodman, 
Tenenbaum (2016)
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Together, these results are incompatible with RL prediction error signaling in the 

striatum.  

 

 

Figure 3: Striatum represents Bayesian Surprise, not reinforcement learning prediction 

error 

a) Mean prediction error from the best fitting RL model, sorted by whether outcome was 

positive or negative. b) Mean surprise from Bayesian rule learning model, sorted by 

whether outcome was positive or negative. c) Whole brain corrected results for the 

contrast of positive > negative outcomes. There were no significant voxels in the striatum 

for this contrast. d) Whole brain corrected results for the contrast of negative > positive 

outcomes. e) Results of a conjunction analysis displaying voxels that are significantly 

active for both negative > positive outcomes and the parametric effect of surprise. Both 

contrasts were corrected for multiple comparisons across the whole brain before being 

entered into the conjunction analysis. f) Whole brain corrected results for the contrast of 

parametric surprise > parametric prediction error, without the effect of outcome partialed 

out.  
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period, during which most rule updating was likely to occur. We used the cIFS subregion 

involved in rule updating during both cue and feedback as the seed region in a psycho-

physiological interaction (PPI) analysis. Connectivity between cIFS and dorsal striatum 

increased during the feedback period (Figure 5A), buttressing our claim that rule 

updating occurs via interactions between the striatum, which we hypothesize represents 

the values of rules, and the cIFS, which other literature suggests maintains and executes 

the most accurate one (Miller and Cohen 2001; Koechlin et al. 2003; Badre and 

D'Esposito 2009). 

 

Figure 5: Rule Updating 

a) Rule updating during the feedback period in the striatum and left cIFS b) Rule 

updating during the subsequent cue period in the left cIFS. c) Projections of a and c onto 
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Non-Boolean concepts
• Experiment included context-dependent 

(determiner-like) concepts.

• What languages explain inductive bias 
for these non-boolean concepts?
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Figure 1: During the concept learning phase (A) the teacher (above) clicked through a grid of creatures, revealing the labels for
creatures in the train set, while the student (below) waited. During the concept communicating phase (B), the teacher explained
the concept to the student in a chatroom. During the concept testing phase (C), both participants were shown the same grid of
held-out test creatures. Each selected the creatures (yellow) that they believed belonged to the concept. Finally, the participants
were shown their scores for the round (D).

concept, we generated 100 specific creatures, split into 50 for
training and 50 for testing. We ensured some positive exam-
ples of the concept even for very restrictive rules by first ran-
domly selecting 6 positive instances of the concept and then
adding 44 items chosen at random from all remaining items
(i.e., according to the true concept base rate).

Procedure
Every pair of participants was placed in a game, where one
was assigned the role of the “teacher” (initial learner) and
the other was assigned the role of the “student” (secondary
learner). Each game consisted of 5 rounds, each with a new
concept from a new rule. Each of a game’s 5 concepts used a
different creature kind, and each concept was presented with
a different nonce word as the species name. The ordering
of concepts was randomized so that there was no standard
ordering of rule types across the games.

On each round, participants went through three phases:
concept learning, concept communicating, and concept test-
ing (Figure 1). During the concept learning phase, the teacher
was presented a grid of training creatures and was instructed
to click on individual creatures to reveal whether or not they
belonged to the species defined by the concept. Once the
teacher clicked on every creature in the grid, they were pre-
sented a message advising them to review the creatures for
as long as they needed. When the teacher ended the concept
learning phase, they proceeded to the concept communicating
phase, where they entered an online chatroom and were were
instructed to teach the concept to the student. Participants
were provided no additional instructions for the chatroom,
and they were allowed to talk freely. In order to prevent a
teacher from rushing through the chatroom without properly
communicating with their student, only the student was given
the ability proceed to the final concept testing phase. In the

final phase both participants were (separately) given the same
grid of test creatures and asked to tag the creatures that they
believed belonged to the species. Neither participant had ac-
cess to their chatroom messages during this phase.

Once both participants completed concept testing for a
concept, they were provided feedback in the form of their
own and their partner’s score, computed as: # of hits �
# of false alarms. We encouraged them to learn concepts
thoroughly and communicate effectively with a monetary
bonus equal to the sum of both players’ scores (in cents).
Participants were made aware of the task structure and bonus
mechanic prior to starting the first round; they had to answer
5 comprehension questions correctly to begin to the game.

Analysis and Results
Our experiment yielded rich data for exploring whether and
how concepts are learned from language, and how learning
from language compares to learning from examples. We first
examine performance during the concept testing phase for
both the student and teacher participants. We then explore
the time spent learning from each type of evidence. Finally,
we explore the actual language used to teach concepts in the
concept communicating phase.

Concept learning performance
Participants assigned to be the teacher take part in a standard
Boolean concept learning paradigm, and results are in accord
with expectations. The five rule types we used in our ex-
periment cover a range of complexity in terms of description
length (Feldman, 2000), which manifests in variable perfor-
mance in test accuracy across types (Figure 2).

Students have access to the concept only through the lan-
guage conveyed by their partner. The average student ac-
curacy during the concept testing phase should thus be no

f1(x) = 1 ^ f3(x) = 0
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Bayes’ rule lets us 
compare candidate rules. 
How do we find them?



Finding rules?

• Random search works for simple 
concepts…

laws in first-order logic and one or more abstract concepts indicated by a
blank predicate (e.g., f(X), g(X)). Two possibilities for a simple theory
of magnetism are shown, labeled Theory B and Theory C (these will be
explained in much greater detail below). The height of the surface at a
given point represents how well the corresponding theory is supported by
the observed data, which we measure as the Bayesian posterior probability.
(Note that in contrast to Figure 2, where “lower is better”, here “higher is
better”, and the goal is to seek out maxima of the landscape, not minima.)
Unlike the weight space shown in Figure 2, this portrait of a “theory space” as
two-dimensional is only metaphorical: it is not simply a lower-dimensional
slice of a higher-dimensional space. The space of theories in a language
of thought is infinite and combinatorially structured with a neighborhood
structure that is impossible to visualize faithfully on a page.

 interacts(X,Y)           interacts(Y,X)
Theory Space

Theory Space

Higher Probability

Lower Probability

1. Current theory: Theory B 
 interacts(X,Y)           f(X)    f(Y) 
 interacts(X,Y)           f(X)    g(Y)

3. Compare current and
    proposed theories 

4. Probabilistically
    accept proposal 

2. Probabilistically propose an
    alternative theory: Theory C

 interacts(X,Y)           f(X)    f(Y)
 interacts(X,Y)           f(X)    g(Y)

Figure 3: Schematic representation of the learning landscape within the domain of simple
magnetism. Steps 1-4 illustrate the algorithmic process in this framework. The actual
space of of theories is discrete, multidimensional and not necessarily locally connected.

At the level of computational theory, we can imagine an ideal Bayesian
learner who computes the full posterior probability distribution over all pos-
sible theories, that is, who grasps this entire landscape and assesses its height
at all points in parallel, conditioned on any given observed data set. But this
is clearly unrealistic as a starting point for algorithmic accounts of children’s
learning, or any practical learning system with limited processing resources.
Intuition suggests that children may simultaneously consider no more than
a handful of candidate theories in their active thought, and developmental-
ists typically speak of the child’s current theory as if, as in connectionist
models, the learner’s knowledge state corresponds to just a single point on
the landscape rather than the whole surface or posterior distribution. The
ideal Bayesian learner is in a sense similar to a person who has “not toiled

15

Ullman, Goodman, 
Tenenbaum (2012)



The problem of induction

• Concept learning quickly gets hard for 
people…

• How do we learn many complex concepts 
with many features from lots of data?

• A solution: amplify limited individual 
learning by accumulation over 
generations — the “cultural ratchet” 
(Tomasello, 1999).
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period, during which most rule updating was likely to occur. We used the cIFS subregion 

involved in rule updating during both cue and feedback as the seed region in a psycho-

physiological interaction (PPI) analysis. Connectivity between cIFS and dorsal striatum 

increased during the feedback period (Figure 5A), buttressing our claim that rule 

updating occurs via interactions between the striatum, which we hypothesize represents 

the values of rules, and the cIFS, which other literature suggests maintains and executes 

the most accurate one (Miller and Cohen 2001; Koechlin et al. 2003; Badre and 

D'Esposito 2009). 
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a) Rule updating during the feedback period in the striatum and left cIFS b) Rule 

updating during the subsequent cue period in the left cIFS. c) Projections of a and c onto 
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Figure 1: During the concept learning phase (A) the teacher (above) clicked through a grid of creatures, revealing the labels for
creatures in the train set, while the student (below) waited. During the concept communicating phase (B), the teacher explained
the concept to the student in a chatroom. During the concept testing phase (C), both participants were shown the same grid of
held-out test creatures. Each selected the creatures (yellow) that they believed belonged to the concept. Finally, the participants
were shown their scores for the round (D).

concept, we generated 100 specific creatures, split into 50 for
training and 50 for testing. We ensured some positive exam-
ples of the concept even for very restrictive rules by first ran-
domly selecting 6 positive instances of the concept and then
adding 44 items chosen at random from all remaining items
(i.e., according to the true concept base rate).

Procedure
Every pair of participants was placed in a game, where one
was assigned the role of the “teacher” (initial learner) and
the other was assigned the role of the “student” (secondary
learner). Each game consisted of 5 rounds, each with a new
concept from a new rule. Each of a game’s 5 concepts used a
different creature kind, and each concept was presented with
a different nonce word as the species name. The ordering
of concepts was randomized so that there was no standard
ordering of rule types across the games.

On each round, participants went through three phases:
concept learning, concept communicating, and concept test-
ing (Figure 1). During the concept learning phase, the teacher
was presented a grid of training creatures and was instructed
to click on individual creatures to reveal whether or not they
belonged to the species defined by the concept. Once the
teacher clicked on every creature in the grid, they were pre-
sented a message advising them to review the creatures for
as long as they needed. When the teacher ended the concept
learning phase, they proceeded to the concept communicating
phase, where they entered an online chatroom and were were
instructed to teach the concept to the student. Participants
were provided no additional instructions for the chatroom,
and they were allowed to talk freely. In order to prevent a
teacher from rushing through the chatroom without properly
communicating with their student, only the student was given
the ability proceed to the final concept testing phase. In the

final phase both participants were (separately) given the same
grid of test creatures and asked to tag the creatures that they
believed belonged to the species. Neither participant had ac-
cess to their chatroom messages during this phase.

Once both participants completed concept testing for a
concept, they were provided feedback in the form of their
own and their partner’s score, computed as: # of hits �
# of false alarms. We encouraged them to learn concepts
thoroughly and communicate effectively with a monetary
bonus equal to the sum of both players’ scores (in cents).
Participants were made aware of the task structure and bonus
mechanic prior to starting the first round; they had to answer
5 comprehension questions correctly to begin to the game.

Analysis and Results
Our experiment yielded rich data for exploring whether and
how concepts are learned from language, and how learning
from language compares to learning from examples. We first
examine performance during the concept testing phase for
both the student and teacher participants. We then explore
the time spent learning from each type of evidence. Finally,
we explore the actual language used to teach concepts in the
concept communicating phase.

Concept learning performance
Participants assigned to be the teacher take part in a standard
Boolean concept learning paradigm, and results are in accord
with expectations. The five rule types we used in our ex-
periment cover a range of complexity in terms of description
length (Feldman, 2000), which manifests in variable perfor-
mance in test accuracy across types (Figure 2).

Students have access to the concept only through the lan-
guage conveyed by their partner. The average student ac-
curacy during the concept testing phase should thus be no
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period, during which most rule updating was likely to occur. We used the cIFS subregion 

involved in rule updating during both cue and feedback as the seed region in a psycho-

physiological interaction (PPI) analysis. Connectivity between cIFS and dorsal striatum 

increased during the feedback period (Figure 5A), buttressing our claim that rule 

updating occurs via interactions between the striatum, which we hypothesize represents 

the values of rules, and the cIFS, which other literature suggests maintains and executes 
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“Ratchet”

This requires faithful 
transmission of 

knowledge, and it has to be 
easier than directly learning 

from examples.



Learning from language

• A minimal paradigm to compare concept 
learning from observing examples and 
from linguistic communication.

Figure 1: During the concept learning phase (A) the teacher (above) clicked through a grid of creatures, revealing the labels for
creatures in the train set, while the student (below) waited. During the concept communicating phase (B), the teacher explained
the concept to the student in a chatroom. During the concept testing phase (C), both participants were shown the same grid of
held-out test creatures. Each selected the creatures (yellow) that they believed belonged to the concept. Finally, the participants
were shown their scores for the round (D).

concept, we generated 100 specific creatures, split into 50 for
training and 50 for testing. We ensured some positive exam-
ples of the concept even for very restrictive rules by first ran-
domly selecting 6 positive instances of the concept and then
adding 44 items chosen at random from all remaining items
(i.e., according to the true concept base rate).

Procedure
Every pair of participants was placed in a game, where one
was assigned the role of the “teacher” (initial learner) and
the other was assigned the role of the “student” (secondary
learner). Each game consisted of 5 rounds, each with a new
concept from a new rule. Each of a game’s 5 concepts used a
different creature kind, and each concept was presented with
a different nonce word as the species name. The ordering
of concepts was randomized so that there was no standard
ordering of rule types across the games.

On each round, participants went through three phases:
concept learning, concept communicating, and concept test-
ing (Figure 1). During the concept learning phase, the teacher
was presented a grid of training creatures and was instructed
to click on individual creatures to reveal whether or not they
belonged to the species defined by the concept. Once the
teacher clicked on every creature in the grid, they were pre-
sented a message advising them to review the creatures for
as long as they needed. When the teacher ended the concept
learning phase, they proceeded to the concept communicating
phase, where they entered an online chatroom and were were
instructed to teach the concept to the student. Participants
were provided no additional instructions for the chatroom,
and they were allowed to talk freely. In order to prevent a
teacher from rushing through the chatroom without properly
communicating with their student, only the student was given
the ability proceed to the final concept testing phase. In the

final phase both participants were (separately) given the same
grid of test creatures and asked to tag the creatures that they
believed belonged to the species. Neither participant had ac-
cess to their chatroom messages during this phase.

Once both participants completed concept testing for a
concept, they were provided feedback in the form of their
own and their partner’s score, computed as: # of hits �
# of false alarms. We encouraged them to learn concepts
thoroughly and communicate effectively with a monetary
bonus equal to the sum of both players’ scores (in cents).
Participants were made aware of the task structure and bonus
mechanic prior to starting the first round; they had to answer
5 comprehension questions correctly to begin to the game.

Analysis and Results
Our experiment yielded rich data for exploring whether and
how concepts are learned from language, and how learning
from language compares to learning from examples. We first
examine performance during the concept testing phase for
both the student and teacher participants. We then explore
the time spent learning from each type of evidence. Finally,
we explore the actual language used to teach concepts in the
concept communicating phase.

Concept learning performance
Participants assigned to be the teacher take part in a standard
Boolean concept learning paradigm, and results are in accord
with expectations. The five rule types we used in our ex-
periment cover a range of complexity in terms of description
length (Feldman, 2000), which manifests in variable perfor-
mance in test accuracy across types (Figure 2).

Students have access to the concept only through the lan-
guage conveyed by their partner. The average student ac-
curacy during the concept testing phase should thus be no

Chopra, Tessler, Goodman (subm)



Results

• Language is sufficient:

• Students who learn from language perform 
only slightly worse than their teacher.

• (Approx. 5% lower accuracy for students, by 
Bayesian mixed effects model.)

Figure 2: Average accuracy of teachers and students during
the concept communicating phase of the experiment. Error
bars denote bootstrapped 95% confidence intervals.

greater than the average teacher accuracy, which appears to
be true for our 5 rule types in Figure 2. To assess the po-
tential accuracy differences between learning from examples
vs. from language, we built a Bayesian mixed-effects model
predicting whether or not a participant responded accurately
during the concept testing phase as a function of the rule, the
participant’s role (teacher vs. student), and their interaction.
We included random intercepts and effect of rule for partic-
ipants and random intercepts and effect of role for each of
the 50 concepts. All regression models were created in Stan
(http://mc-stan.org/) accessed with the brms package (Brkner,
2017). We find a main effect of role such that students were
less accurate than teachers (posterior mean and 95% credible
interval: b = �0.41(�0.69,�0.12)). However, this effect is
very small in absolute terms—the average difference in ac-
curacy for students vs. teachers is just 5.3% (95% credible
interval: 2.7%, 8.2%). Thus language appears to be sufficient
to convey concepts; students are able to learn concepts from
language, yielding performance very close to their teachers,
who had access to the actual training examples.

Performance on individual concepts (rules reified in partic-
ular stimuli) reveal substantial variability in learning. Figure
3 shows the average performance of teachers and students
for each of the 50 concepts along with the concept-specific
chance accuracy1. Teachers perform above chance in all con-
cepts, but there is significant variation in performance for
concepts within a given rule. Such variation is expected given
the known importance of feature salience and other stimulus
properties on concept learning (Nosofsky, 1986). Of more
interest, the gap between teacher and student performance
also varies.2 This variability cannot be attributed to stimu-
lus features, which are shared between teacher and student,
but rather reflect the language available for conveying dif-

1Chance is defined here as the accuracy achieved by guessing at
random but with the base rate of positive examples shown for that
concept. This is a stronger comparison than random guessing.

2Generally teachers do better than students. Two concepts where
with the opposite trend are driven by a few outliers where the teacher
attained low accuracy in the final phase even though they properly
communicated the concept.

ferent features. Inspection reveals that concepts with a large
gap in teacher-student performance have a small number of
teachers who used language in idiosyncratic ways. For exam-
ple, one teacher described creatures belonging to the concept
“bugs: no wings” as “like a worm ... [with a] straighten[ed]
body”. Another teacher described “flowers: purple petals OR
thorns” as “no color ... a flower with sharp edge branches and
some tails”. In both cases the teacher fails to use a simple
word for the relevant feature (“wings”, “thorns”) unlike most
other participants. These cases may arise from particularly
confused teachers, particularly difficult to describe features,
or an interaction. We return to this question below.

Often, how well a person learns depends on the particular
person they learned from. We find a strong linear relation-
ship between average student accuracy and (corresponding)
teacher accuracy across the 50 concepts (r = .88, p  .001;
Figure 4). We further find that this correlation remains strong
at the individual level (r = .60, p  .001; Figure 4).

While this suggests that students make mistakes when their
teacher does, we may further ask whether they make the same
mistakes. Since teachers and students are presented the same
held-out test examples in the same order during the concept
testing phase of the experiment, we can measure the simi-
larity between teacher and student responses at the level of
individual stimuli using Hamming distance (the total number
of times the student and teacher responded differently). The
average distance between teacher and student in our data set
is 11.1 differences (out of 50 possible). To calibrate this num-
ber we computed a baseline by randomly permuting teacher-
student pairings, which yields average distance 19.9 (95%
CI [19.84,19.96]). A second, tighter, baseline considers per-
mutation of student-teacher pairs only within each concept
(matching evidence seen by teachers). This yields average
distance 13.53 (95% CI [13.18,13.91]). Thus we can con-
clude that students’ pattern of responses is more similar to
their own teachers’ responses than to other teachers in the
same concept (and in the whole data set). Language seems
to be sufficient to convey the concept as understood by the
teacher, even when the teacher has learned the wrong thing.

Returning to the question of whether the efficacy of lan-
guage depends on the confidence of the teacher, we don’t
have a direct measure of confidence, but can use the aver-
age accuracy of teachers within a concept as a proxy for how
confident teachers are likely to be. Figure 5 shows the rela-
tionship between teacher accuracy and distance from teacher
to student responses. We find a strong relationship: lan-
guage seems to yield stronger alignment between students
and teachers when the teachers are (expected to be) confident
in what they have learned (r =�0.75, p  .001).

Study time for observation vs. language
As we saw above, language appears to be relatively sufficient
for conveying concepts, how efficient is language compared
to directly learning from observed examples? We could con-
sider efficiency in terms of amount of evidence required to
learn or amount of effort required. In our experiment the



Results

• Teacher accuracy 
predicts student 
accuracy.

Figure 4: Accuracy of student-teacher pairs in concept testing
phase. Small dots indicate individual teacher-student pairs,
while larger dots indicate mean within concepts. Lines indi-
cate bootstrapped 95% confidence intervals.

that not all of this time was needed for belief updating (as op-
posed to rote clicking of the stimuli).

Language used for knowledge transmission
We have seen that language is a sufficient and (probably) effi-
cient means for transmitting concepts in our experiment. Now
we turn to the question of what specific aspects of language
were used by teachers to convey concepts. We first coded
each of the messages in the game as Informative, Follow-Up,
Social, or Miscellaneous, as described above. A vast major-
ity of the messages (2763 of the 3223) were concept-relevant,
i.e. Informative or Follow-up.

When properties are predicated on categories, the result-
ing linguistic expression is typically a quantified sentence

Figure 5: Average accuracy of the teacher versus the aver-
age hamming distance between student and teacher responses
during concept testing phases of all 50 concepts.

Figure 6: Time spent by teachers learning concepts from ob-
servation and time spent by teacher-student pairs communi-
cating about concepts. Circles denote average time for a con-
cept, error bars are bootstrapped 95% confidence intervals.
Lines pair the same concept.

Figure 7: Distribution of concept-relevant messages.

(e.g.,“All wugs have orange heads”; “Most feps have purple
wings”) or a generic sentence which lacks explicit quantifi-
cation (e.g., “Morseths have saber teeth” Carlson & Pelletier,
1995). Rather than talking about categories explicitly, par-
ticipants could convey the actual examples they saw using
numerical language (e.g., “4 of them ...”) or describing in-
dividual exemplars (e.g., “white-tail with feathers, white-tail
with no feathers, ...”).

The first author first identified Generics consistent with
other coding schemes used for generic sentences (Gelman,
Goetz, Sarnecka, & Flukes, 2008), then identified Quanti-
fiers, Numerics, and Exemplars, before grouping the remain-
ing messages by the following linguistic constructs: Condi-
tionals, Imperatives, Adverbials, and Yes/No statements. Re-
maining messages were grouped as “Other”. See Table 1 for
examples of messages across these categories.

Figure 7 shows label counts for concept-relevant messages
in our data set. The majority of these messages use gener-
ics or quantifiers to convey information about the category,
with generics being the most common. Other commentary
about the concepts and simply Yes/No responses make up
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• Individual students make the same 
mistakes as their teachers (hamming 
distance lower than permutation baseline).

Figure 4: Accuracy of student-teacher pairs in concept testing
phase. Small dots indicate individual teacher-student pairs,
while larger dots indicate mean within concepts. Lines indi-
cate bootstrapped 95% confidence intervals.
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each of the messages in the game as Informative, Follow-Up,
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(e.g.,“All wugs have orange heads”; “Most feps have purple
wings”) or a generic sentence which lacks explicit quantifi-
cation (e.g., “Morseths have saber teeth” Carlson & Pelletier,
1995). Rather than talking about categories explicitly, par-
ticipants could convey the actual examples they saw using
numerical language (e.g., “4 of them ...”) or describing in-
dividual exemplars (e.g., “white-tail with feathers, white-tail
with no feathers, ...”).

The first author first identified Generics consistent with
other coding schemes used for generic sentences (Gelman,
Goetz, Sarnecka, & Flukes, 2008), then identified Quanti-
fiers, Numerics, and Exemplars, before grouping the remain-
ing messages by the following linguistic constructs: Condi-
tionals, Imperatives, Adverbials, and Yes/No statements. Re-
maining messages were grouped as “Other”. See Table 1 for
examples of messages across these categories.

Figure 7 shows label counts for concept-relevant messages
in our data set. The majority of these messages use gener-
ics or quantifiers to convey information about the category,
with generics being the most common. Other commentary
about the concepts and simply Yes/No responses make up

Average of 2.4 
more different 
answers from a 

student to a 
different teacher, 
in same concept. 



Results

• Language is efficient.

• Participants spent longer learning from 
examples than from language. (Both were 
freely determined by participants.)
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while larger dots indicate mean within concepts. Lines indi-
cate bootstrapped 95% confidence intervals.
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cient means for transmitting concepts in our experiment. Now
we turn to the question of what specific aspects of language
were used by teachers to convey concepts. We first coded
each of the messages in the game as Informative, Follow-Up,
Social, or Miscellaneous, as described above. A vast major-
ity of the messages (2763 of the 3223) were concept-relevant,
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Figure 5: Average accuracy of the teacher versus the aver-
age hamming distance between student and teacher responses
during concept testing phases of all 50 concepts.

Figure 6: Time spent by teachers learning concepts from ob-
servation and time spent by teacher-student pairs communi-
cating about concepts. Circles denote average time for a con-
cept, error bars are bootstrapped 95% confidence intervals.
Lines pair the same concept.

Figure 7: Distribution of concept-relevant messages.

(e.g.,“All wugs have orange heads”; “Most feps have purple
wings”) or a generic sentence which lacks explicit quantifi-
cation (e.g., “Morseths have saber teeth” Carlson & Pelletier,
1995). Rather than talking about categories explicitly, par-
ticipants could convey the actual examples they saw using
numerical language (e.g., “4 of them ...”) or describing in-
dividual exemplars (e.g., “white-tail with feathers, white-tail
with no feathers, ...”).

The first author first identified Generics consistent with
other coding schemes used for generic sentences (Gelman,
Goetz, Sarnecka, & Flukes, 2008), then identified Quanti-
fiers, Numerics, and Exemplars, before grouping the remain-
ing messages by the following linguistic constructs: Condi-
tionals, Imperatives, Adverbials, and Yes/No statements. Re-
maining messages were grouped as “Other”. See Table 1 for
examples of messages across these categories.

Figure 7 shows label counts for concept-relevant messages
in our data set. The majority of these messages use gener-
ics or quantifiers to convey information about the category,
with generics being the most common. Other commentary
about the concepts and simply Yes/No responses make up



Results

• It’s the language of generalization that 
matters.

• Most messages use generics or quantifiers.

Figure 4: Accuracy of student-teacher pairs in concept testing
phase. Small dots indicate individual teacher-student pairs,
while larger dots indicate mean within concepts. Lines indi-
cate bootstrapped 95% confidence intervals.
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cient means for transmitting concepts in our experiment. Now
we turn to the question of what specific aspects of language
were used by teachers to convey concepts. We first coded
each of the messages in the game as Informative, Follow-Up,
Social, or Miscellaneous, as described above. A vast major-
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(e.g.,“All wugs have orange heads”; “Most feps have purple
wings”) or a generic sentence which lacks explicit quantifi-
cation (e.g., “Morseths have saber teeth” Carlson & Pelletier,
1995). Rather than talking about categories explicitly, par-
ticipants could convey the actual examples they saw using
numerical language (e.g., “4 of them ...”) or describing in-
dividual exemplars (e.g., “white-tail with feathers, white-tail
with no feathers, ...”).

The first author first identified Generics consistent with
other coding schemes used for generic sentences (Gelman,
Goetz, Sarnecka, & Flukes, 2008), then identified Quanti-
fiers, Numerics, and Exemplars, before grouping the remain-
ing messages by the following linguistic constructs: Condi-
tionals, Imperatives, Adverbials, and Yes/No statements. Re-
maining messages were grouped as “Other”. See Table 1 for
examples of messages across these categories.

Figure 7 shows label counts for concept-relevant messages
in our data set. The majority of these messages use gener-
ics or quantifiers to convey information about the category,
with generics being the most common. Other commentary
about the concepts and simply Yes/No responses make up
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• Claim: The cultural ratchet arises 
specifically out of the ability of language 
to convey generalizations through 
generics and quantifiers. 
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period, during which most rule updating was likely to occur. We used the cIFS subregion 

involved in rule updating during both cue and feedback as the seed region in a psycho-

physiological interaction (PPI) analysis. Connectivity between cIFS and dorsal striatum 

increased during the feedback period (Figure 5A), buttressing our claim that rule 

updating occurs via interactions between the striatum, which we hypothesize represents 

the values of rules, and the cIFS, which other literature suggests maintains and executes 

the most accurate one (Miller and Cohen 2001; Koechlin et al. 2003; Badre and 

D'Esposito 2009). 

 

Figure 5: Rule Updating 

a) Rule updating during the feedback period in the striatum and left cIFS b) Rule 

updating during the subsequent cue period in the left cIFS. c) Projections of a and c onto 
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Figure 1: During the concept learning phase (A) the teacher (above) clicked through a grid of creatures, revealing the labels for
creatures in the train set, while the student (below) waited. During the concept communicating phase (B), the teacher explained
the concept to the student in a chatroom. During the concept testing phase (C), both participants were shown the same grid of
held-out test creatures. Each selected the creatures (yellow) that they believed belonged to the concept. Finally, the participants
were shown their scores for the round (D).

concept, we generated 100 specific creatures, split into 50 for
training and 50 for testing. We ensured some positive exam-
ples of the concept even for very restrictive rules by first ran-
domly selecting 6 positive instances of the concept and then
adding 44 items chosen at random from all remaining items
(i.e., according to the true concept base rate).

Procedure
Every pair of participants was placed in a game, where one
was assigned the role of the “teacher” (initial learner) and
the other was assigned the role of the “student” (secondary
learner). Each game consisted of 5 rounds, each with a new
concept from a new rule. Each of a game’s 5 concepts used a
different creature kind, and each concept was presented with
a different nonce word as the species name. The ordering
of concepts was randomized so that there was no standard
ordering of rule types across the games.

On each round, participants went through three phases:
concept learning, concept communicating, and concept test-
ing (Figure 1). During the concept learning phase, the teacher
was presented a grid of training creatures and was instructed
to click on individual creatures to reveal whether or not they
belonged to the species defined by the concept. Once the
teacher clicked on every creature in the grid, they were pre-
sented a message advising them to review the creatures for
as long as they needed. When the teacher ended the concept
learning phase, they proceeded to the concept communicating
phase, where they entered an online chatroom and were were
instructed to teach the concept to the student. Participants
were provided no additional instructions for the chatroom,
and they were allowed to talk freely. In order to prevent a
teacher from rushing through the chatroom without properly
communicating with their student, only the student was given
the ability proceed to the final concept testing phase. In the

final phase both participants were (separately) given the same
grid of test creatures and asked to tag the creatures that they
believed belonged to the species. Neither participant had ac-
cess to their chatroom messages during this phase.

Once both participants completed concept testing for a
concept, they were provided feedback in the form of their
own and their partner’s score, computed as: # of hits �
# of false alarms. We encouraged them to learn concepts
thoroughly and communicate effectively with a monetary
bonus equal to the sum of both players’ scores (in cents).
Participants were made aware of the task structure and bonus
mechanic prior to starting the first round; they had to answer
5 comprehension questions correctly to begin to the game.

Analysis and Results
Our experiment yielded rich data for exploring whether and
how concepts are learned from language, and how learning
from language compares to learning from examples. We first
examine performance during the concept testing phase for
both the student and teacher participants. We then explore
the time spent learning from each type of evidence. Finally,
we explore the actual language used to teach concepts in the
concept communicating phase.

Concept learning performance
Participants assigned to be the teacher take part in a standard
Boolean concept learning paradigm, and results are in accord
with expectations. The five rule types we used in our ex-
periment cover a range of complexity in terms of description
length (Feldman, 2000), which manifests in variable perfor-
mance in test accuracy across types (Figure 2).

Students have access to the concept only through the lan-
guage conveyed by their partner. The average student ac-
curacy during the concept testing phase should thus be no

Kweps have 
orange feathers  
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period, during which most rule updating was likely to occur. We used the cIFS subregion 

involved in rule updating during both cue and feedback as the seed region in a psycho-
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increased during the feedback period (Figure 5A), buttressing our claim that rule 

updating occurs via interactions between the striatum, which we hypothesize represents 
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Generics

• Two ideas of how generics work:
• they provide a minimal example, 
• they have social force — they’re 

intended examples.

“Wugs have broken wings.”
“Wugs have red legs.”

“Mosquitos cary malaria.”
“Birds lay eggs.”

“Birds are female.”

Figure 1: During the concept learning phase (A) the teacher (above) clicked through a grid of creatures, revealing the labels for
creatures in the train set, while the student (below) waited. During the concept communicating phase (B), the teacher explained
the concept to the student in a chatroom. During the concept testing phase (C), both participants were shown the same grid of
held-out test creatures. Each selected the creatures (yellow) that they believed belonged to the concept. Finally, the participants
were shown their scores for the round (D).

concept, we generated 100 specific creatures, split into 50 for
training and 50 for testing. We ensured some positive exam-
ples of the concept even for very restrictive rules by first ran-
domly selecting 6 positive instances of the concept and then
adding 44 items chosen at random from all remaining items
(i.e., according to the true concept base rate).

Procedure
Every pair of participants was placed in a game, where one
was assigned the role of the “teacher” (initial learner) and
the other was assigned the role of the “student” (secondary
learner). Each game consisted of 5 rounds, each with a new
concept from a new rule. Each of a game’s 5 concepts used a
different creature kind, and each concept was presented with
a different nonce word as the species name. The ordering
of concepts was randomized so that there was no standard
ordering of rule types across the games.

On each round, participants went through three phases:
concept learning, concept communicating, and concept test-
ing (Figure 1). During the concept learning phase, the teacher
was presented a grid of training creatures and was instructed
to click on individual creatures to reveal whether or not they
belonged to the species defined by the concept. Once the
teacher clicked on every creature in the grid, they were pre-
sented a message advising them to review the creatures for
as long as they needed. When the teacher ended the concept
learning phase, they proceeded to the concept communicating
phase, where they entered an online chatroom and were were
instructed to teach the concept to the student. Participants
were provided no additional instructions for the chatroom,
and they were allowed to talk freely. In order to prevent a
teacher from rushing through the chatroom without properly
communicating with their student, only the student was given
the ability proceed to the final concept testing phase. In the

final phase both participants were (separately) given the same
grid of test creatures and asked to tag the creatures that they
believed belonged to the species. Neither participant had ac-
cess to their chatroom messages during this phase.

Once both participants completed concept testing for a
concept, they were provided feedback in the form of their
own and their partner’s score, computed as: # of hits �
# of false alarms. We encouraged them to learn concepts
thoroughly and communicate effectively with a monetary
bonus equal to the sum of both players’ scores (in cents).
Participants were made aware of the task structure and bonus
mechanic prior to starting the first round; they had to answer
5 comprehension questions correctly to begin to the game.

Analysis and Results
Our experiment yielded rich data for exploring whether and
how concepts are learned from language, and how learning
from language compares to learning from examples. We first
examine performance during the concept testing phase for
both the student and teacher participants. We then explore
the time spent learning from each type of evidence. Finally,
we explore the actual language used to teach concepts in the
concept communicating phase.

Concept learning performance
Participants assigned to be the teacher take part in a standard
Boolean concept learning paradigm, and results are in accord
with expectations. The five rule types we used in our ex-
periment cover a range of complexity in terms of description
length (Feldman, 2000), which manifests in variable perfor-
mance in test accuracy across types (Figure 2).

Students have access to the concept only through the lan-
guage conveyed by their partner. The average student ac-
curacy during the concept testing phase should thus be no

Figure 1: During the concept learning phase (A) the teacher (above) clicked through a grid of creatures, revealing the labels for
creatures in the train set, while the student (below) waited. During the concept communicating phase (B), the teacher explained
the concept to the student in a chatroom. During the concept testing phase (C), both participants were shown the same grid of
held-out test creatures. Each selected the creatures (yellow) that they believed belonged to the concept. Finally, the participants
were shown their scores for the round (D).

concept, we generated 100 specific creatures, split into 50 for
training and 50 for testing. We ensured some positive exam-
ples of the concept even for very restrictive rules by first ran-
domly selecting 6 positive instances of the concept and then
adding 44 items chosen at random from all remaining items
(i.e., according to the true concept base rate).

Procedure
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was assigned the role of the “teacher” (initial learner) and
the other was assigned the role of the “student” (secondary
learner). Each game consisted of 5 rounds, each with a new
concept from a new rule. Each of a game’s 5 concepts used a
different creature kind, and each concept was presented with
a different nonce word as the species name. The ordering
of concepts was randomized so that there was no standard
ordering of rule types across the games.

On each round, participants went through three phases:
concept learning, concept communicating, and concept test-
ing (Figure 1). During the concept learning phase, the teacher
was presented a grid of training creatures and was instructed
to click on individual creatures to reveal whether or not they
belonged to the species defined by the concept. Once the
teacher clicked on every creature in the grid, they were pre-
sented a message advising them to review the creatures for
as long as they needed. When the teacher ended the concept
learning phase, they proceeded to the concept communicating
phase, where they entered an online chatroom and were were
instructed to teach the concept to the student. Participants
were provided no additional instructions for the chatroom,
and they were allowed to talk freely. In order to prevent a
teacher from rushing through the chatroom without properly
communicating with their student, only the student was given
the ability proceed to the final concept testing phase. In the

final phase both participants were (separately) given the same
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believed belonged to the species. Neither participant had ac-
cess to their chatroom messages during this phase.
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concept, they were provided feedback in the form of their
own and their partner’s score, computed as: # of hits �
# of false alarms. We encouraged them to learn concepts
thoroughly and communicate effectively with a monetary
bonus equal to the sum of both players’ scores (in cents).
Participants were made aware of the task structure and bonus
mechanic prior to starting the first round; they had to answer
5 comprehension questions correctly to begin to the game.

Analysis and Results
Our experiment yielded rich data for exploring whether and
how concepts are learned from language, and how learning
from language compares to learning from examples. We first
examine performance during the concept testing phase for
both the student and teacher participants. We then explore
the time spent learning from each type of evidence. Finally,
we explore the actual language used to teach concepts in the
concept communicating phase.

Concept learning performance
Participants assigned to be the teacher take part in a standard
Boolean concept learning paradigm, and results are in accord
with expectations. The five rule types we used in our ex-
periment cover a range of complexity in terms of description
length (Feldman, 2000), which manifests in variable perfor-
mance in test accuracy across types (Figure 2).
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Formalizing generics
• Let r be the probability of feature F for 
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period, during which most rule updating was likely to occur. We used the cIFS subregion 

involved in rule updating during both cue and feedback as the seed region in a psycho-

physiological interaction (PPI) analysis. Connectivity between cIFS and dorsal striatum 

increased during the feedback period (Figure 5A), buttressing our claim that rule 

updating occurs via interactions between the striatum, which we hypothesize represents 

the values of rules, and the cIFS, which other literature suggests maintains and executes 

the most accurate one (Miller and Cohen 2001; Koechlin et al. 2003; Badre and 

D'Esposito 2009). 

 

Figure 5: Rule Updating 

a) Rule updating during the feedback period in the striatum and left cIFS b) Rule 

updating during the subsequent cue period in the left cIFS. c) Projections of a and c onto 
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Figure 1: During the concept learning phase (A) the teacher (above) clicked through a grid of creatures, revealing the labels for
creatures in the train set, while the student (below) waited. During the concept communicating phase (B), the teacher explained
the concept to the student in a chatroom. During the concept testing phase (C), both participants were shown the same grid of
held-out test creatures. Each selected the creatures (yellow) that they believed belonged to the concept. Finally, the participants
were shown their scores for the round (D).

concept, we generated 100 specific creatures, split into 50 for
training and 50 for testing. We ensured some positive exam-
ples of the concept even for very restrictive rules by first ran-
domly selecting 6 positive instances of the concept and then
adding 44 items chosen at random from all remaining items
(i.e., according to the true concept base rate).

Procedure
Every pair of participants was placed in a game, where one
was assigned the role of the “teacher” (initial learner) and
the other was assigned the role of the “student” (secondary
learner). Each game consisted of 5 rounds, each with a new
concept from a new rule. Each of a game’s 5 concepts used a
different creature kind, and each concept was presented with
a different nonce word as the species name. The ordering
of concepts was randomized so that there was no standard
ordering of rule types across the games.

On each round, participants went through three phases:
concept learning, concept communicating, and concept test-
ing (Figure 1). During the concept learning phase, the teacher
was presented a grid of training creatures and was instructed
to click on individual creatures to reveal whether or not they
belonged to the species defined by the concept. Once the
teacher clicked on every creature in the grid, they were pre-
sented a message advising them to review the creatures for
as long as they needed. When the teacher ended the concept
learning phase, they proceeded to the concept communicating
phase, where they entered an online chatroom and were were
instructed to teach the concept to the student. Participants
were provided no additional instructions for the chatroom,
and they were allowed to talk freely. In order to prevent a
teacher from rushing through the chatroom without properly
communicating with their student, only the student was given
the ability proceed to the final concept testing phase. In the

final phase both participants were (separately) given the same
grid of test creatures and asked to tag the creatures that they
believed belonged to the species. Neither participant had ac-
cess to their chatroom messages during this phase.

Once both participants completed concept testing for a
concept, they were provided feedback in the form of their
own and their partner’s score, computed as: # of hits �
# of false alarms. We encouraged them to learn concepts
thoroughly and communicate effectively with a monetary
bonus equal to the sum of both players’ scores (in cents).
Participants were made aware of the task structure and bonus
mechanic prior to starting the first round; they had to answer
5 comprehension questions correctly to begin to the game.

Analysis and Results
Our experiment yielded rich data for exploring whether and
how concepts are learned from language, and how learning
from language compares to learning from examples. We first
examine performance during the concept testing phase for
both the student and teacher participants. We then explore
the time spent learning from each type of evidence. Finally,
we explore the actual language used to teach concepts in the
concept communicating phase.

Concept learning performance
Participants assigned to be the teacher take part in a standard
Boolean concept learning paradigm, and results are in accord
with expectations. The five rule types we used in our ex-
periment cover a range of complexity in terms of description
length (Feldman, 2000), which manifests in variable perfor-
mance in test accuracy across types (Figure 2).

Students have access to the concept only through the lan-
guage conveyed by their partner. The average student ac-
curacy during the concept testing phase should thus be no

Kweps have 
orange feathers  

	

	 33	

period, during which most rule updating was likely to occur. We used the cIFS subregion 

involved in rule updating during both cue and feedback as the seed region in a psycho-

physiological interaction (PPI) analysis. Connectivity between cIFS and dorsal striatum 

increased during the feedback period (Figure 5A), buttressing our claim that rule 

updating occurs via interactions between the striatum, which we hypothesize represents 

the values of rules, and the cIFS, which other literature suggests maintains and executes 

the most accurate one (Miller and Cohen 2001; Koechlin et al. 2003; Badre and 

D'Esposito 2009). 

 

Figure 5: Rule Updating 

a) Rule updating during the feedback period in the striatum and left cIFS b) Rule 

updating during the subsequent cue period in the left cIFS. c) Projections of a and c onto 

y=-13 y=-13

a)

b) d)

c)

y=-13

0

10

peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/115253doi: bioRxiv preprint first posted online Mar. 9, 2017; 

f1(x) = 1 ^ f3(x) = 0
<latexit sha1_base64="M11bv7GD8Ka6y79VFFmd8Xai51E=">AAACAXicdVDJSgNBEO2JW4zbqBfBS2MQ4iXMGFFzEIJePEYwCyTD0NNTkzTpWejuUUOIF3/FiwdFvPoX3vwbO4vg+qDg9XtVdNXzEs6ksqx3IzMzOze/kF3MLS2vrK6Z6xt1GaeCQo3GPBZNj0jgLIKaYopDMxFAQo9Dw+udjfzGFQjJ4uhS9RNwQtKJWMAoUVpyza3AtQs3eyc2bl+D3wEcuKXR23LNvFUsW3b50Ma/iV20xsijKaqu+db2Y5qGECnKiZQt20qUMyBCMcphmGunEhJCe6QDLU0jEoJ0BuMLhnhXKz4OYqErUnisfp0YkFDKfujpzpCorvzpjcS/vFaqgmNnwKIkVRDRyUdByrGK8SgO7DMBVPG+JoQKpnfFtEsEoUqHltMhfF6K/yf1/aJdKloXB/nK6TSOLNpGO6iAbHSEKugcVVENUXSL7tEjejLujAfj2XiZtGaM6cwm+gbj9QNhMpTu</latexit>

f1(x) = 1 ^ f3(x) = 0
<latexit sha1_base64="M11bv7GD8Ka6y79VFFmd8Xai51E=">AAACAXicdVDJSgNBEO2JW4zbqBfBS2MQ4iXMGFFzEIJePEYwCyTD0NNTkzTpWejuUUOIF3/FiwdFvPoX3vwbO4vg+qDg9XtVdNXzEs6ksqx3IzMzOze/kF3MLS2vrK6Z6xt1GaeCQo3GPBZNj0jgLIKaYopDMxFAQo9Dw+udjfzGFQjJ4uhS9RNwQtKJWMAoUVpyza3AtQs3eyc2bl+D3wEcuKXR23LNvFUsW3b50Ma/iV20xsijKaqu+db2Y5qGECnKiZQt20qUMyBCMcphmGunEhJCe6QDLU0jEoJ0BuMLhnhXKz4OYqErUnisfp0YkFDKfujpzpCorvzpjcS/vFaqgmNnwKIkVRDRyUdByrGK8SgO7DMBVPG+JoQKpnfFtEsEoUqHltMhfF6K/yf1/aJdKloXB/nK6TSOLNpGO6iAbHSEKugcVVENUXSL7tEjejLujAfj2XiZtGaM6cwm+gbj9QNhMpTu</latexit>

P (h|d) / P (d|h)P (h)
<latexit sha1_base64="Ulfvi/PsgA7okQYUdYCca2w7Hd0=">AAACAnicdVDLSsNAFJ34rPUVdSVuBovQbkKionZXdOMygn1AG8pkMmmGTiZhZiKUtLjxV9y4UMStX+HOv3H6EHweGDiccy93zvFTRqWy7Xdjbn5hcWm5sFJcXVvf2DS3thsyyQQmdZywRLR8JAmjnNQVVYy0UkFQ7DPS9PsXY795Q4SkCb9Wg5R4MepxGlKMlJa65q5bjoZBBXZSkaQqgW45GEYVLVa6Zsm2qrZTPXHgb+JY9gQlMIPbNd86QYKzmHCFGZKy7dip8nIkFMWMjIqdTJIU4T7qkbamHMVEevkkwggeaCWAYSL04wpO1K8bOYqlHMS+noyRiuRPbyz+5bUzFZ55OeVppgjH00NhxqDOOu4DBlQQrNhAE4QF1X+FOEICYaVbK+oSPpPC/0nj0HKOLPvquFQ7n9VRAHtgH5SBA05BDVwCF9QBBrfgHjyCJ+POeDCejZfp6Jwx29kB32C8fgBAsZYQ</latexit>

PL1(r|“Cs F”) /
PS(“Cs F”|r)P (r)

<latexit sha1_base64="hg9hVAtopdjwfsHcxPSTviZh9fc="></latexit>


