

Le problème de la matière noire: galaxies spirales

Françoise Combes

Laboratoire d'Étude du Rayonnement et de la Matière en Astrophysique

La matière noire est partout

Galaxies

Amas de galaxies, Filaments cosmiques

Les atomes (baryons) correspondent à une fraction $f_b = 5/(25+5) = 17\%$ de la matière dans l'Univers (M/M_b=6)

Recherche directe Production dans les accélérateurs

Premières évidences de matière noire

1937 – Fritz Zwicky calcule la masse de l'amas de Coma
En utilisant le théorème du Viriel. Vitesses mesurées V~1000km/s
M~ 5 10¹⁴ M_☉

$M/L = 500 M_{\odot}/L_{\odot}$

Il ne voyait pas tous les baryons + pb de distance -- matière noire dans les galaxies

- -- poussière entre les galaxies + obscuration
- -- modification de la loi de Newton à grande échelle

Sinclair Smith 1938: amas de Virgo, même M/L

1932: Jan Oort trouve qu'il manque de la masse au voisinage du Soleil dans la Voie Lactée
→ Solides, poussières, gaz, astres morts...

Première courbe de rotation de M31

Babcock 1939

M31=Andromède, confirmation

Plus de connaissance de la distribution de masse (infrarouge), et du gaz à grande distance

Même résultat pour plusieurs galaxies

Courbes de rotation **optique:** étoiles et gaz ionisé (Hα et [NII] 0.6µm)

Radio: La raie à 21cm de hydrogène découverte en 1951 (Ewen & Purcell)

HI est 3-4 fois plus étendu en rayons

→ Courbes plates

Au centre courbe supérieure à la courbe théorique (bulbe) M/L augmente avec le rayon

Arrigo Finzi (1963) loi de gravitation différente à grande distance 6

Courbes de rotation optiques

23 Sb, jusqu'à R₂₅ 25 mag par " 2

M/L varie selon les types et les populations stellaires

M/L(*) = 2, 4, 6Sc Sb Sa resp.

Rubin et al 1978

7

Hydrogène atomique dans les galaxies

R(gaz) ~ 2-4 **R**(optique)

Comment construire une courbe de rotation?

- Effet Doppler
- Repliement des deux côtés,

Des galaxies de tous types

Le diapason de Hubble

13

Obtention des vitesses

Optique: Hα, NII, raies émission gaz ionisé **Radio:** HI-21cm, CO: 2.6, 1.3 mm Futur ALMA SKA, ...

Traceur	résolution angulaire	résolution spectrale
н	7" 30"	2 … 10 km s ⁻¹
СО	1.5" 8"	2 … 10 km s ⁻¹
Ηα,	0.5" 1.5"	10 … 30 km s ⁻¹
ΗΙ CO Hα, …	7" 30" 1.5" 8" 0.5" 1.5"	2 10 km s ⁻¹ 2 10 km s ⁻¹ 10 30 km s ⁻¹

ALMA, désert d'Atacama

Courbe de rotation: catalogue

HI: cartographie de l'hydrogène atomique Longueur d'onde 21cm (Sofue & Rubin 2001)

M83: optique

M83: une galaxie semblable à la Voie Lactée₈

La Voie Lactée: déprojection difficile

Nous ne voyons que la tranche

Les distances sont mal connues Dépendent des vitesses Ambiguités

La Voie Lactée: gas HI, H₂

Courbe Universelle

- Comment normaliser les milliers de courbes?
- Correlation avec la luminosité totale

Interprétation des diverses courbes

NGC2403 HSB

A la même échelle

UGC 128 LSB Faible brillance de surface

Deux galaxies de même luminosité, Et même Vitesse Vf

Normalisation à R_d disque exponentiel

- Plusieurs façons de faire
- --disque maximum
- -- même halo noir
- -- normalisation au disque optique

Le disque maximum

74 galaxies spirales: bon accord avec une modélisation bulbe+ disque M/L = 1-5
→ MN suit les étoiles?
Palunas & Williams 2000

Couplage MN-baryons: Galaxies naines

Les ondulations des courbes de rotation suivent les baryons: une fois mis a l'échelle (M/L cst), on retrouve la courbe de rotation observée

Couplage MN-baryons: Galaxies massives

L'accord est moins bon au bord: ionisation du gaz HI

Swaters et al 2012 28

Courbe de rotation universelle

La masse totale du halo noir est mal connue La masse croît comme R Ou s'arrêter?

L'universalité est obtenue si ce sont les baryons qui déterminent la distribution de masse totale

Rotation et types de galaxies

Fin de la conspiration

Généralisation Espace 3D

La luminosité détermine la courbe de rotation

V(R/Rd, L)

 \rightarrow Les baryons sont la clef

Salucci et al 2007

Modélisation des courbes de rotation

- Contribution des étoiles, disque exponentiel (proche infrarouge)
- Contribution du gaz, HI (en 1/R), CO (exponentiel)
- Contribution de la matière noire

Résultats des modèles

-1

• Persic et al 96, Salucci et al 2007

La densité de surface au centre $\rho_0 r_0$ est constante pour le halo des spirales

Kormendy & Freeman (2004)

 $ho_0 r_0 = 100 \ M_{\odot}/pc^2$

Distribution radiale des divers composants

Le gaz moléculaire H₂ ne rayonne pas La molécule la plus abondante CO sert de traceur

Sa distribution radiale est exponentielle, comme les étoiles

Le gaz atomique présente une dépression centrale **Distribution plus plate ou 1/R**

Distribution du gaz: HI, H₂

Courbes de rotation HI-21cm

Rapport des densités de surface

Bosma 1981

La MN et le gaz atomique HI ont la même distribution

Relation de Tully-Fisher

Relation entre vitesse maximum et luminosité DV corrigé de l'inclinaison Mieux en infrarouge I-band (pas d'extinction)

Corrélation avec Vflat Meilleure que Vmax

Verheijen 2001

La relation de Tully-Fisher pour les galaxies naines comprenant plus de gaz que d'étoiles → prendre en compte la masse du gaz

Relation M_{baryons} avec V Rotation

b) 101 1011 10¹⁰ 1010 8 3 10 g 10, 101 8 10 10² 10⁸ log Va log V

 $M_b \sim V_c^4$

McGaugh et al (2000) \rightarrow Relation Tully-Fisher baryonique

Tully-Fisher baryonique

 f_b fraction universelle de baryons= 17%

CDM: Cold Dark Matter

 Λ énergie noire

McGaugh 2011

Relation Tully-Fisher

La prédiction du modèle Standard CDM a une pente $M_b \sim V_c^3$

De plus, il y a trop de baryons dans les galaxies

Surtout pour les faibles masses d'un facteur 10-100

Famaey & McGaugh 2012

Déformations du champ de vitesses

- Les vitesses non-circulaires empêchent de dériver la distribution de masse
- Perturbations internes: barre
- Perturbations externes: plan gauchi « warp », interactions, accrétion, changement de l'inclinaison
- Epaississement des plans: généralisation des galaxies vues par la tranche

Problème pour les cuspides/cœur
Problème pour la masse totale

Orbites non-circulaires: barres

Les écarts à la circularité deviennent cohérents grâce à une onde spirale ou barrée

Les galaxies spirales sont instables et forment des barres

Correction des orbites allongées

N6503, Kuzio de Naray et al 2012

46

Courbes de rotation de galaxies barrées

Rotcur Modélisation d'orbites circulaires PA, incl variables

gSb

Pourquoi DiskFit ne corrige pas?

Le logiciel modélise une barre, quand elle est bien visible dans les vitesses

Ne peut pas lorsque la barre est parallèle aux axes de symétrie

Calculs sur un cas concret: NGC 3319

Wise 3.4µm

HI-21cm

Vitesse HI

Dispersion HI

Différents modèles de NGC 3319

Warp: plans gauchis

-10 0 +10 min of arc

Orbites inclinées, non circulaires

Calcul plus difficile, lorsque la déformation est importante Les orbites sont hautement elliptiques, cela dépend de la forme à 3D du halo noir

Galaxies avec anneau polaire

→Test de la forme à 3D des halos Noirs, Vpol < Veq</p>

→Modèle CDM: prédit Vpol < Veq Ou bien Vpol=Veq, si accrétion

Brook et al 2008

Conclusion: Matière noire et spirales

Le meilleur traceur pour les parties externes est le gaz atomique HI-21cm → masse totale

Parties internes: le gaz ionisé (H α , NII) plus de résolution spatiale Le gaz moléculaire, traceur CO \rightarrow cuspide-coeur

Interprétation: bulbe, disque, halo noir

- -- Les courbes de rotation dépendent essentiellement des baryons
- -- courbe universelle V(r/rd, L), disque maximum
- -- Relation de Tully-Fisher
- -- couplage MN-baryons, $\sigma_{\text{DM}}/\sigma_{\text{HI}}=10$

-- Déformations: barres pour les parties internes, Warps pour les parties externes