Gravitational Lensing and Dark Matter

Yannick Mellier

IAP Paris and CEA/IRFU Saclay

Multiple images: the « Einstein Cross»

Galaxy 2227+030

Redshift z=0.0394

The « Einstein Cross»

CIV emission line at 154.9 nm observed 417.6 nm :z = 1.695

General relativity:

curvature of space time locally modified by mass condensation

Deflection of light, magnification, image multiplication distortion of objects : directly **depend on the amount of matter**

Gravitational lensing effect is **achromatic** (photons follow geodesics regardless their energy) Copyright © Addison Wesley

Gravitational Lensing

theory, concepts and definitions

Gravitational lensing: fundamental assumptions

- Weak field limit:

Thin lens approximation:
$$R_{lens} \ll R_{bench}$$

- Small deflection angle:

b = impact parameter; R = Schwarzschild radius

$$\alpha = 4G M/bc^2 << 2G M/R_{\rm S}c^2$$

 $=> R_{\rm S} << b$

- Transparent lens

$$\sigma^2 \ll c^2$$

$$t_{\rm dyn} \sim R_{\rm lens}/v >> t_{\rm cross-photon}$$

$$dyn \sim \Lambda_{lens} / V >> t_{cross-p}$$

Lens equation and deflection angle

Deflection angle and mass density

$$lpha = -rac{2}{c^2} \int_S^O
abla_\perp \Phi \,\mathrm{d}l$$

$$\alpha\left(\xi\right) = \frac{4G}{c^2} \int \frac{\left(\xi - \xi'\right)\Sigma(\xi')}{|\xi - \xi'|^2} \,\mathrm{d}\xi'$$

where

- $\Sigma(\xi)$ is the projected mass density,
- ξ is a 2-dimensional vector in the lens plane and
- the integration is done over the lens plane.

Lens equation : spherical lens

• Lens equation

$$ec{\eta}=rac{D_{os}}{D_{ol}}ec{\xi}-D_{ls}\widehat{ec{lpha}}\left(ec{\xi}
ight)$$

Setting $ec{\eta}=D_{os}ec{eta}$ and $ec{\xi}=D_{ol}ec{ heta}$,

$$ec{eta} = ec{ heta} - ec{lpha} \left(ec{ heta}
ight)$$

• Spherically symmetric lens

$$\beta = \theta - \frac{D_{ls}}{D_{os}D_{ol}} \frac{4GM(\theta)}{c^2\theta}$$

Perfect lens configuration « Einstein ring »

Source-Lens-Observer perfectly aligned

Einstein ring

$$heta_E = \left(rac{D_{ls}}{D_{os}D_{ol}}rac{4GM\left(heta_E
ight)}{c^2}
ight)^{1/2}$$

Typical values:

- For a lens of 1 solar mass located at 1 AU and a source a 1 kpc $\theta_F = 0.003$ arc-second
- For a lens of 10^{11} solar masses located at 100kpc and a source at 300 kpc θ_E = 1 arc-second
- For a lens of 10¹⁵ solar masses located at 1Gpc and a source at 3 Gpc $\theta_F = 30$ arc-second (sensitive to cosmological parameters)

Convergence and critical density

 Convergence and critical density The gravitational convergence is a dimensionless surface masse density:

$$\kappa\left(ec{ heta}
ight) = rac{\Sigma\left(D_{ol}ec{ heta}
ight)}{\Sigma_{cr}}$$

where Σ_{crit} is the *critical surface mass density*.

$$\Sigma_{cr} = \frac{c^2}{4\pi G} \frac{D_{os}}{D_{ol} D_{ls}}$$

that defined a "strength" of the lens. Strong lensing cases have $\Sigma > \Sigma_{cr}$

Magnification and distortion

• Jacobian of the lens mapping. Differentiting the lens equation

$$A\left(\vec{\theta}\right) = \frac{\partial \vec{\beta}}{\partial \theta} = \left(\delta_{ij} - \frac{\partial^2 \psi\left(\vec{\theta}\right)}{\partial \theta_i \partial \theta_j}\right) = M^{-1}$$

• Convergence, Shear

$$\begin{cases} \kappa = \frac{1}{2}(\psi_{,11} + \psi_{,22}) \\ \gamma_1\left(\vec{\theta}\right) = \frac{1}{2}(\psi_{,11} - \psi_{,22}) = \gamma\left(\vec{\theta}\right) \cos\left[2\varphi\left(\vec{\theta}\right)\right] \\ \gamma_2\left(\vec{\theta}\right) = \psi_{,12} = \gamma\left(\vec{\theta}\right) \sin\left[2\varphi\left(\vec{\theta}\right)\right] \end{cases}$$

Magnification and distortion

• Magnification, Convergence, Shear

$$A = \mathcal{M}^{-1} = \begin{pmatrix} 1 - \kappa - \gamma_1 & -\gamma_2 \\ -\gamma_2 & 1 - \kappa + \gamma_1 \end{pmatrix}$$

$$\mathcal{M}^{-1} = (1 - \kappa) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} - \gamma \begin{pmatrix} \cos(2\varphi) & \sin(2\varphi) \\ \sin(2\varphi) & -\cos(2\varphi) \end{pmatrix}$$

where $\gamma=\gamma_1+{
m i}\,\gamma_2=|\gamma|e^{2{
m i}\,arphi}$

• Amplification amplitude

$$\boldsymbol{\mu} = (\det A)^{-1} = \frac{1}{\left[(1 - \kappa)^2 - |\boldsymbol{\gamma}|^2 \right]}$$

• Eigenvalues of \mathcal{M}^{-1} :

$$1-\kappa+\gamma$$
, $1-\kappa+\gamma$

Magnification and distortion

- Image and source From the magnification matrix,
 - κ expresses an isotropic magnification. It transforms a circle into a larger/smaller circle.
 - γ is an anisotropic magnification. It transforms a circle into an ellipse with minor and major axes :

$$b = (1 - \kappa + \gamma)^{-1}$$
, $a = (1 - \kappa - \gamma)^{-1}$

From (reduced) shear to ellipticity

• Reduced shear Let us write the magnification matrix as:

$$A = \mathcal{M}^{-1} = (1 - \kappa) \begin{pmatrix} 1 - g_1 & -g_2 \\ -g_2 & 1 + g_1 \end{pmatrix}$$

where

$$g\left(ec{ heta}
ight) = rac{\gamma\left(ec{ heta}
ight)}{1-\kappa\left(ec{ heta}
ight)} = g_1 + \mathrm{i}g_2 = |g|e^{2\mathrm{i}arphi}$$

is the *reduced shear*. It directly provides the image ellipicity induced by lensing on a circular source:

$$\frac{b}{a} = \frac{1 - |g|}{1 + |g|}$$

as well as the orientation of the major axis, φ .

→ Measuring ellipticity=measuring gravitational shear

Caustic and critical lines

• Amplification amplitude

$$\mu = (\det A)^{-1} = \frac{1}{\left[(1 - \kappa)^2 - |\gamma|^2 \right]}$$

- critical lines corresponds to positions in the lens plane with $\det A = 0$
- the corresponding positions on the source plane are the caustic lines
- the positions of source points with respect to a caustic lines define de number of image multiplication and the source margnification
- when a source crosses a caustic line, its amplitication is almost infinity, and image pairs are formed

Caustic lines and critical lines

Circular potential with core

Caustic and critical lines Bimodal potential with core

Dark matter with Strong Gravitational Lensing

Abell 370: first gravitational arc discovered

6 Sept. 1985 - A370 arc discovery Very 1st image at CFHT Cass. focus RCA 512x320 CCD 0.8" /pixel,

10mn R-band, seeing 0.8"

Abell 370, HST/ACS ; credit NASA/ESA

Abell 370: first gravitational arc discovered

A spiral structure resolved at z=0.724

Abell 370, HST/ACS ; credit NASA/ESA

Abell 370: singular isothermal sphere model

Lens equation:

$$\boldsymbol{\theta}_{S} = \boldsymbol{\theta}_{I} - 4\pi \frac{\sigma^{2}}{c^{2}} \frac{D_{LS}}{D_{OS}} \frac{\boldsymbol{\theta}_{I}}{|\boldsymbol{\theta}_{I}|}$$

Effective potential:

$$\varphi = 4\pi \frac{\sigma^2}{c^2} \frac{D_{LS}}{D_{OS}} r$$

Magnification matrix:

$$\begin{pmatrix} 1 & 0\\ 0 & 1 - 4\pi \frac{\sigma^2}{c^2} \frac{D_{LS}}{D_{OS}} \frac{1}{|\boldsymbol{\theta}_I|} \end{pmatrix}$$

Deflection angle:

$$\theta_{SIS} = 4\pi \frac{\sigma^2}{c^2} \frac{D_{LS}}{D_{OS}} \approx 16" \left(\frac{\sigma}{1000 \mathrm{km.sec^{-1}}}\right)^2$$

Kneib et al 94

24

Total mass inside the Einstein radius:

$$M\left(\theta\right) = 0.57 \times 10^{14} \ h^{-1} \ M_{\odot}\left(\frac{\theta}{30"}\right) \left(\frac{\sigma}{1000 {\rm km.sec}^{-1}}\right)^2$$

Tangential + radial arc: Core radius can be derived

MS2137-23

No counter arc: Cluster mass distribution NOT circular

1 radial arc: if clusters are IS, core radius CANNOT be zero.

Modelling strong lenses

Constraints :

Method : mapping, inversion

MS2137-23 mass model from critical lines analysis

$$\Phi(r,\,\theta) = \Phi_0 \sqrt{1 + \left(\frac{r}{r_c}\right)^2 (1 - \epsilon \,\cos\,2\theta)} \,.$$

$$M^{-1} = \begin{pmatrix} 1 - \frac{1}{r} \frac{\partial \Phi}{\partial r} - \frac{1}{r^2} \frac{\partial^2 \Phi}{\partial \theta^2} & -\frac{\partial}{\partial r} \left(\frac{1}{r} \frac{\partial \Phi}{\partial \theta} \right) \\ -\frac{\partial}{\partial r} \left(\frac{1}{r} \frac{\partial \Phi}{\partial \theta} \right) & 1 - \frac{\partial^2 \Phi}{\partial r^2} \end{pmatrix}$$

Small ellipticity and small core radius

$$\frac{\partial}{\partial r} \left(\frac{1}{r} \frac{\partial \Phi}{\partial \theta} \right) \sim 0$$

Tangential critical line

$$1 - \frac{1}{r}\frac{\partial\Phi}{\partial r} - \frac{1}{r^2}\frac{\partial^2\Phi}{\partial\theta^2} = 0$$

Radial critical line $1 - \frac{\partial^2 \Phi}{\partial r^2} = 0$.

MS2137-23 mass model from critical lines analysis and 2 sources

MS2137-23: position and shape of the 5th image: depend on the mass profile

Gavazzi et al 2004

MS2137-23: strong/weak with the 5th image

Even a lens configuration with 2 sources and a [radial+tangential] arc system cannot provide conclusive results on SIS vs NFW

Conclusion: find the 5th image!

But not that obvious...if located under a very bright galaxy

Dark matter with Weak Gravitational Lensing

Beyond gravitational arcs:weak lensing

Melllier 1999

Simulation, lensing cluster : isothermal sphere at z=0.3

Complication: galaxy ellipticity contaminates gravitational ellipticity

From shear to mass density

2D mass density map = Distortion (ellipticity) map

$$\kappa(\theta) = \frac{1}{\pi} \int \hat{F}^*(\theta - \theta') \gamma(\theta') \, \mathrm{d}\theta^2 + \kappa_0$$

Application to real data. Sampling ellipticities on a grid:

$$\Sigma(\theta) - \Sigma_0 = \Sigma_{critic} \frac{1}{\pi} a^2 \sum_{i,j} \Re \left(\hat{F}^*(\theta - \theta_{i,j}) \,\bar{\varepsilon}(\theta_{i,j}) \right)$$

where *a* is the distance between grid points

HST Cluster of galaxies Abell 2218, z=0.17

Mass reconstruction: Abell 2218

HST Abell 1689 Light (galaxies)

Abell 1689 Dark matter

Getting the absolute mass

- The mass reconstruction provides the shape of the projeted mass distribution but not the absolute scale.
- Need the redshift of the sources:

$$\kappa\left(\vec{\theta}, z\right) = \frac{\Sigma\left(\vec{\theta}\right)}{\Sigma_{critic}\left(z\right)} = \Sigma\left(\vec{\theta}\right) \frac{4\pi G}{c^2} D_{ol} \left[\frac{D_{ls}}{D_{os}}\right]$$
$$\gamma\left(\vec{\theta}, z\right) = \frac{4\pi G}{c^2} D_{ol} \left[\frac{D_{ls}}{D_{os}}\right] \gamma\left(\vec{\theta}\right)$$

Summary mass from cluster WL reconstruction

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Name	σ_{WL} (km s ⁻¹) SIS	WL by aperture	M ₂₅₀₀ e mass	WL usin	g NFW profile	fitting of the	shear
A2390	1117_{-82}^{+76}	5.2 ± 0.6	2.4 ± 0.5	6.8 ± 1.5	2.9 ± 0.6	$9.2^{+2.0}_{-1.9}$	$14.6^{+3.1}_{-2.9}$
MS 0016+16	1164^{+151}_{-173}	7.9 ± 1.1	3.2 ± 0.7	15.8 ± 4.3	$4.2^{+1.4}_{-1.3}$	$16.0^{+5.3}_{-4.9}$	$27.0^{+9.0}_{-8.4}$
MS 0906+11	880^{+99}_{-111}	3.7 ± 0.7	1.6 ± 0.4	7.4 ± 1.5	1.5 ± 0.4	$4.4^{+1.2}_{-0.2}$	$6.7^{+1.8}_{-1.8}$
MS 1224+20	837^{+133}_{-158}	3.0 ± 0.9	1.0 ± 0.4	2.3 ± 1.2	0.8 ± 0.4	$2.1^{+1.2}_{-1.0}$	$3.2^{+1.8}_{-1.5}$
MS 1231+15	566^{+145}_{-195}	0.8 ± 0.6	0.4 ± 0.2	0.5 ± 0.5	0.4 ± 0.2	$0.9^{+0.5}_{-0.5}$	$1.3^{+0.7}_{-0.7}$
MS 1358+62	1048^{+102}_{-113}	4.3 ± 0.8	1.8 ± 0.4	5.6 ± 2.0	$1.8^{+0.6}_{-0.5}$	$5.5^{+1.9}_{-1.7}$	$8.5^{+3.0}_{-2.6}$
MS 1455+22	964_{-95}^{+87}	3.3 ± 0.7	1.2 ± 0.3	3.7 ± 1.2	$1.4_{-0.3}^{+0.4}$	$3.9^{+1.0}_{-1.0}$	$6.0^{+1.6}_{-1.5}$
MS 1512+36	722^{+145}_{-181}	2.1 ± 0.8	0.6 ± 0.3	2.5 ± 1.6	$0.7^{+0.4}_{-0.3}$	$1.8^{+1.1}_{-0.9}$	$2.8^{+1.6}_{-1.4}$
MS 1621+26	998^{+128}_{-146}	5.3 ± 1.0	1.7 ± 0.7	5.8 ± 2.0	$2.0^{+0.8}_{-0.6}$	$6.5^{+2.8}_{-1.9}$	$10.3_{-3.0}^{+4.4}$
A68	1036^{+89}_{-97}	4.4 ± 0.8	1.9 ± 0.4	4.8 ± 1.8	$1.8^{+0.5}_{-0.4}$	$5.6^{+1.6}_{-1.3}$	$8.6^{+2.5}_{-2.1}$
A209	898^{+92}_{-102}	3.9 ± 0.9	1.5 ± 0.6	5.7 ± 1.4	$1.5_{-0.4}^{+0.5}$	$4.3^{+1.4}_{-1.1}$	$6.6^{+2.1}_{-1.7}$
A267	1008^{+90}_{-99}	3.3 ± 0.6	1.5 ± 0.3	4.3 ± 1.4	1.4 ± 0.4	$4.0^{+1.2}_{-1.2}$	$6.2^{+1.9}_{-1.8}$
A383	701^{+138}_{-171}	2.6 ± 0.7	0.6 ± 0.3	3.7 ± 1.6	$0.6^{+0.4}_{-0.3}$	$1.6^{+0.9}_{-0.8}$	$2.3^{+1.3}_{-1.2}$
A963	844^{+99}_{-112}	2.7 ± 0.6	1.0 ± 0.3	3.1 ± 1.1	1.3 ± 0.4	$3.5^{+1.1}_{-1.0}$	$5.3^{+1.6}_{-1.5}$
A1689	1370_{-68}^{+65}	6.7 ± 0.7	3.7 ± 0.5	11.2 ± 1.8	$4.0^{+0.8}_{-0.7}$	$12.8^{+2.7}_{-2.3}$	$20.4_{-3.6}^{+4.2}$
A1763	1060_{-95}^{+87}	4.9 ± 0.7	2.3 ± 0.4	8.5 ± 2.2	2.3 ± 0.6	$7.0^{+2.0}_{-1.7}$	$11.0^{+3.0}_{-2.7}$
A2218	1042_{-94}^{+87}	4.5 ± 0.7	2.0 ± 0.5	4.6 ± 1.2	$1.6^{+0.5}_{-0.4}$	$4.7^{+1.5}_{-1.3}$	$7.1^{+2.3}_{-1.9}$
A2219	1074_{-89}^{+82}	5.0 ± 0.7	2.3 ± 0.4	7.7 ± 1.7	$2.0^{+0.6}_{-0.5}$	$5.9^{+1.7}_{-1.4}$	$9.2^{+2.7}_{-2.2}$
A370	1359^{+90}_{-96}	6.5 ± 0.9	3.1 ± 0.5	10.6 ± 2.5	$3.7^{+1.1}_{-0.9}$	$12.9^{+3.8}_{-3.2}$	$21.1_{-5.3}^{+6.2}$
CL0024+16	1140^{+111}_{-123}	5.5 ± 0.9	2.3 ± 0.5	7.4 ± 2.4	$2.7^{+0.9}_{-0.8}$	$9.1^{+3.2}_{-2.7}$	$14.7^{+5.1}_{-4.4}$

Summary mass from cluster WL reconstruction

The Bullet cluster

Bullet cluster

Bullet cluster

Clowe et al 2006

Mass reconstruction

Application to clusters of galaxies

Cl0024+1654 + Abell 1689

Weak+strong lensing

Stacking 25 lensing clusters

Stacking lensing clusters

Gravitational lensing by large scale structure: cosmic shear

Cosmic shear: gravitational lensing by Large Scale Structure of the Universe

First Theoretical studies

- Kristian & Sachs 1966
- Gunn 1967
- Blandford et al 1991
- Miralda-Escudé 1991
- Kaiser 1992

Colombi/Mellier 1999

Cosmic shear: weak gravitational distortion

 \rightarrow Projected on the sky: coherent ellipticity field

Most spectacular Cosmic shear and tomography with HST

Massey et al 2007

Cosmic shear and tomography with HST

Dark matter

Light (galaxies)

Massey et al 2007

Cosmic shear and tomography with HST

Massey et al 2007

CFHTLens - mass maps Wide fields

CFHTLens - Cosmic shear signal

Planck Collab. Planck 2015-XIII

Fu et al 2014

Cosmology with WL ?

Weinberg et al 2013

Reference	Telescope/instrument	Area (deg²)	Number of galaxies	Result
Bacon et al. (2000) Van Waerbeke et al. (2000)	WHT/EEV-CCD CFHT/UH8K+CFH12K	0.5 1.75	27k 150k	$\sigma_8 = 1.5 \pm 0.5 \ (@ \ \Omega_m = 0.3)$ Detection ^a
Wittman et al. (2000)	Blanco/BTC	1.5	145k	Detection ^D
Rhodes et al. (2001)	HST/WFPC2	0.05	4k	$\sigma_8 (\Omega_m / 0.3)^{0.48} = 0.91^{+0.25}_{-0.30}$
Van Waerbeke et al. (2001)	CFHT/CFH12K	6.5	400k	$\sigma_8 (\Omega_m / 0.3)^{0.6} = 0.99^{+0.08}_{-0.10} (95\% \text{CL})^6$
Hoekstra et al. (2002)	CFHT/CFH12K +Blanco/Mosaic II	53	1.78M	$\sigma_8 (\Omega_m / 0.3)^{0.55} = 0.87^{\pm 0.17}_{-0.23} (95\% \text{CL})$
Refregier et al. (2002)	HST/WFPC2	0.36	31k	$\sigma_8 = 0.94 \pm 0.14 \ (@ \Omega_m = 0.3)$
				$\Gamma = 0.21$)
Bacon et al. (2003)	Keck II/ESI +WHT	1.6		$\sigma_8 (\Omega_m / 0.3)^{0.68} = 0.97 \pm 0.13$
Brown et al. (2003)	MPG ESO 2.2m/WFI	1.25		$\sigma_8 (\Omega_m / 0.3)^{0.49} = 0.72 \pm 0.09^{0.6}$
Jarvis et al. (2003)	Blanco/BTC+Mosaic II	75	2M	$\sigma_8(\Omega_m/0.3)^{0.57} = 0.71^{+0.12}_{-0.16}(2\sigma)$
Hamana et al. (2003)	Subaru/SuprimeCam	2.1	250k	$\sigma_8 (\Omega_m / 0.3)^{0.37} = 0.78^{+0.55}_{-0.25} (95\% \text{CL})$
Rhodes et al. (2004)	HST/STIS	0.25	26k	$\sigma_8(\Omega_m/0.3)^{0.46}(\Gamma/0.21)^{0.18} =$
		-		1.02 ± 0.16
Heymans et al. (2005)	HST/ACS	0.22	50k	$\sigma_8(\Omega_m/0.3)^{0.65} = 0.68 \pm 0.13$
Massey et al. (2005)	WHT/PFIC	4	200k	$\sigma_8 (\Omega_m / 0.3)^{0.5} = 1.02 \pm 0.15$
Hoekstra et al. (2006)	CFHT/MegaCam	22	1.6M	$\sigma_8 = 0.85 \pm 0.06 \ @ \ \Omega_m = 0.3$
Semboloni et al. (2006a)	CFHT/MegaCam	3	150k	$\sigma_8 = 0.89 \pm 0.06 @ \Omega_m = 0.3$
Benjamin et al. (2007)	Various ^g	100	4.5M	$\sigma_8 (\Omega_m / 0.3)^{0.59} = 0.74 \pm 0.04$
Hetterscheidt et al. (2007)	MPG ESO 2.2m/WFI	15	700k	$\sigma_8 = 0.80 \pm 0.10 @ \Omega_m = 0.3$
Massey et al. (2007b)	HST/ACS	1.64	200k	$\sigma_8(\Omega_m/0.3)^{0.44} = 0.866^{+0.085}_{-0.068}$
Schrabback et al. (2007)	HST/ACS	0.4	100k	$\sigma_8 = 0.52^{+0.11}_{-0.15}$ (stat) ± 0.07 (sys) @
				$\Omega_m = 0.3^{\mathrm{f}}$
Fu et al. (2008)	CFHT/MegaCam	57	1.7M	$\sigma_8(\Omega_m/0.3)^{0.64} = 0.70 \pm 0.04$
Schrabback et al. (2010)	HST/ACS	1.64	195k	$\sigma_8(\Omega_m/0.3)^{0.51} = 0.75 \pm 0.08$
Huff et al. (2011)	SDSS	168	1.3M	$\sigma_8 = 0.636^{+0.109}_{-0.154} @ \Omega_m = 0.265^{h}$
Lin et al. (2012)	SDSS	275	4.5M	$\sigma_8(\Omega_{\rm tr}/0.3)^{0.7} = 0.64^{+0.08h}_{-0.13}$
Jee et al. (2013)	Mayall+CTIO/Mosaic	20	1M	$\sigma_8 = 0.833 \pm 0.034^{i}$
Kilbinger et al. (2013)	CFHT/MegaCam	154	4.2M	$\sigma_8(\Omega_m/0.27)^{0.6} = 0.79 \pm 0.03$

After first enthusiastic reactions: skepticism on reliability of WL data and cosmological interpretations: WL is a very hard (too hard?) technique

\rightarrow ... What Next ?

Future of cosmic shear surveys

Euclid

Star

From Thales Alenia Space Italy, Airdus DS, ESA Project office and Euclid Consortium

Galaxy-lenses SLACS (~2010 - HST)

-	()				1	*	~		
SDSS J1420+6019	SDSS J2321-0939	SDSS J1106+5228	SDSS J1029+0420	SDSS J1143-0144	SDSS J0955+0101	SDSS J0841+3824	SDSS J0044+0113	SDSS J1432+6317	SDSS J1451-0239
	ø			0	*(*)		5		1
SDSS J0959+0410	SDSS J1032+5322	SDSS J1443+0304	SDSS J1218+0830	SDSS J2238-0754	SDSS J1538+5817	SDSS J1134+6027	S0SS J2303+1422	SDSS J1103+5322	SDSS J1531-0105
0	0		0	Ś			1.		
SDSS J0912+0029	SDSS J1204+0358	S0SS J1153+4612	SDSS J2341+0000	SDSS J1403+0006	SDSS J0936+0913	SDSS J1023+4230	SDSS J0037-0942	SDSS J1402+6321	SDSS J0728+3835
٢	6,		٢		•		0	Ó	
SDSS J1627-0053	SDSS J1205+4910	SDSS J1142+1001	SDSS J0946+1006	SDSS J1251-0208	SDSS J0029-0055	SDSS J1636+4707	SDSS J2300+0022	SDSS J1250+0523	SDSS J0959+4416
				, i		-	6	7.4	
SDSS J0956+5100	SDSS J0822+2652	SDSS J1621+3931	50SS J1630+4520	SDSS J1112+0826	SDSS J0252+0039	SDSS J1020+1122	SDSS J1430+4105	SDSS J1436-0000	SDSS J0109+1500
()P	C	١				(é)	0		
SDSS J1416+5136	SDSS J1100+5329	SDSS J0737+3216	SDSS J0216-0813	SDSS 00935-0003	SDSS J0330-0020	SDSS J1525+3327	SDSS J0903+4116	SDSS J0008-0004	SDSS J0157-0056

SLACS: The Sloan Lens ACS Survey

www.SLACS.org

A. Bolton (U. Hawai'i IfA), L. Koopmans (Kapteyn), T. Treu (UCSB), R. Gavazzi (IAP Paris), L. Moustakas (JPL/Caltech), S. Burles (MIT)

Image credit: A. Bolton, for the SLACS team and NASA/ESA

Summary

Gravitational lensing

- Can probe the distribution of dark matter from galaxies to large scale structures of the Universe almost directly.
- Is an independent method, beside X-ray or dynamical ones
- Show evidence of dark matter in
 - MACHOS in our galaxy (microlensing: no time to discuss here)
 - Other galaxies (Strong lensing, Weak lensing)
 - Groups and Clusters of galaxies (SL, WL)
 - Superclusters of galaxies (WL)
 - Large Scale Structure (WL)

Summary

- Gravitational lensing confirms that a Universe without dark matter can hardly explain observations
- Modified gravity is still an option but not favoured
- Weak and/or Strong lensing data agree with NFW and SIS, but favours NFW-like radial profiles
- All data compatible with Lambda-CDM predictions
- Cosmic shear is detected, favours lambda-CDM, but detection and measurements very hard and systematics still an issue
- Likely : WL still have to improve
 - \rightarrow Much more statistics: number of galaxies, wave number
 - \rightarrow Improve shear measurement \rightarrow space
 - \rightarrow Numerical simulations for baryon physics (small scales)