Particules $\mathfrak{E ́ l e ́ m e n t a i r e s , ~ G r a v i t a t i o n ~ e t ~ C o s m o l o g i e ~}$

Année 2004-2005

Interactions fortes et chromodynamique quantique I : Aspects perturbatifs
Cours VII: 12 avril 2005

1. Summary of previous lecture
2. Iet hadronization as a branching process 2.1 From one - to many-parton inclusive x-sections
2.2 Sudakov form factor
2.3 Colour structure and preconfinement
2.4 Interference and angular ordering
$2.5 \mathrm{Small}-\chi$ Gehaviour, parton, fadron ofjet multiplicities 2.6 Quarkvs.gluon jets

1. Summary of lecture no. 6

- Polarized $\mathcal{D I S}$, connection w/ axialcurrents and their matrix elements, the «spin»crisis.
- Elements of Regge-theory é its naive connection to small-x in $\mathcal{D I S}:\left(s / s_{0}\right)^{\alpha(0)}<\cdots \chi^{-\alpha(0)}$
- Pusking $\mathcal{D G L A} \mathcal{P}$ to smalle r and smalle x

1. Double scaling limit: valid for

$$
\alpha\left(Q^{2}\right) \log (1 / x) \sim \log \left(s / Q^{2}\right) / \log \left(Q^{2} / \Lambda^{2}\right)<O(1)
$$

and in apparent agreement with data
 $\log (1 / x)=>$ violating $\mathcal{F r o i s s}$ art bound and not in good agreement with the data
Sometfing must intervene to stop an IR catastrophe!
S aturation when $\alpha\left(Q^{2}\right) \times g\left(x, Q^{2}\right) \sim Q^{2} / \Lambda^{2}$?

What is the situation if instead we look at fragmentation, i.e. at jet evolution and hadronization? At finite χ there was a close similarity with $\mathcal{D I S}$. $\mathcal{B u t}$ what happens as $x->0$?
2.1 From 1 to n-parton incl. x-section: Iet calculus

Letus go back to the one-particle incl. x-section (Lect.4) 6ut at parton level (with virtuality $Q_{0}{ }^{2}$)

The two-parton inclusive x-section is given by the graph

Why? Which is the corresponding mathematicalexpression?

Origin to be found in picture of jet evolution as a branching process

Math. Formula for

$\sigma_{H}^{i}\left(x_{i}, Q^{2}\right) \int \frac{d q^{2}}{q^{2}} \frac{\alpha\left(q^{2}\right)}{2 \pi} \int d x_{j} d z d z_{1} d z_{2} E_{i}^{j}\left(x_{j} / x_{i} ; Q^{2}, q^{2}\right) \hat{P}_{j}^{k l}(z)$
$E_{k}^{1}\left(z_{1} ; q^{2}, Q_{0}^{2}\right) E_{l}^{2}\left(z_{2} ; q^{2}, Q_{0}^{2}\right) \delta\left(x_{1}-x_{j} z z_{1}\right) \delta\left(x_{2}-x_{j}(1-z) z_{2}\right)$
Here $\mathcal{P}_{j}{ }^{\kappa \ell}$ is our $\mathcal{P}_{\text {R }}$ of lect.4, ie. w/out virtual contr. $\sim \delta(1-z)$
Simplifies a lot by going over to $\left(n_{1}, n_{2}\right)$ moment
(moment conservation at the vertex)
If we keep q^{2} fixed gives also the dependence on θ_{12} One finds $\left\langle q^{2}\right\rangle \sim \alpha\left(Q^{2}\right) Q^{2}$

2.2 Sudakov form factor

What is the price to pay for faving no realemission, i.e. for the original parton ito keep all its χ_{i} ? ($\mathcal{N} \mathcal{B}$: still fave to keep the final parton at a finite virtuality $Q_{0}{ }^{2}$ or else we get 0 !) Let $\Delta\left(Q^{2}, Q_{0}{ }^{2}\right)$ be the probability that no emission takes place down to an off-shellness Q_{0}^{2} in a jet produced at the scale Q^{2}. $\mathcal{A s}$ it is intuitive, Δ (the $S u d a k o v$ form factor) satisfies an evolution equation containing just the virtual part \mathcal{P}_{v} of the GLAP Kernel. In formulae:

$$
Q^{2} \frac{\partial \Delta\left(Q^{2}, Q_{0}^{2}\right)}{\partial Q^{2}}=\int \frac{d z \alpha}{z} \frac{\alpha}{2 \pi} P_{v}(z) \Delta\left(Q^{2}, Q_{0}^{2}\right)=-\int d z P_{r}(z) \frac{\alpha}{2 \pi} \Delta\left(Q^{2}, Q_{0}^{2}\right)
$$

whose solution is:

$$
\Delta\left(Q^{2}, Q_{0}^{2}\right)=\exp \left(-\int_{Q_{0}^{2}}^{Q^{2}} \frac{d q^{2}}{q^{2}} \int_{\varepsilon}^{1-\varepsilon} d z \frac{\alpha(?)}{2 \pi} P_{r}(z)\right)
$$

$$
\Delta\left(Q^{2}, Q_{0}^{2}\right)=\exp \left(-\int_{Q_{0}^{2}}^{Q^{2}} \frac{d q^{2}}{q^{2}} \int_{\varepsilon}^{1-\varepsilon} d z \frac{\alpha(?)}{2 \pi} P_{r}(z)\right)
$$

This is clearly a very small number as the gap between Q^{2} and Q_{0}^{2} becomes large..

In order to be more quantitative we need to specify both ε and the argument of α. Naive guess: $\varepsilon=Q_{0}{ }^{2} / q^{2}, \alpha(?)=\alpha\left(q^{2}\right)$ giving a power-like suppression
\mathcal{A} more careful analys is suggests that $\alpha(?)=\alpha\left(z(1-z) q^{2}\right)$ while angular ordering (see 2.4) will give $\varepsilon^{2}=Q_{0}{ }^{2} / q^{2}$. The former gives more suppression (bigger α) while the latter does the opposite (smaller phase space). One finds a suppression that is stronger than any power, but not as strong as an exponential:

$$
\Delta\left(Q^{2}, Q_{0}^{2}\right) \sim \exp \left(-c \log Q^{2} \log \log Q^{2}\right)
$$

2.3 Colour structure and preconfinement

We can try to follow not only the flow of energy in the branching process but also that of colour. It is basically as indicated in the following picture (really valid for large-N)

It leads to the concept of colourconnected (CC) partons, those that share a colour line. The overall colour of two colour connected partons is reduced (for two quarks it's 0) and thus CC partons are good precursors of the final hadrons.
The question is: what is the mass distribution of CC systems?

Previously we have seen that the distribution of the inv. mass ${ }^{2}$ of two arbitrary partons is broad $\left(\left\langle\mathbb{M}^{2}\right\rangle \sim\left\langle q^{2}\right\rangle \sim \alpha\left(Q^{2}\right) Q^{2}\right)$. Something dramatically different happens for $\mathcal{M}_{\mathcal{C C}}{ }^{2}$. The reason is related to our \mathcal{S} udakov \mathcal{F}. F.!

The \mathcal{S} udakov $\mathcal{F F}$ was the price to pay for keeping the qq* pair colour connected (partonemission breaks the connection) while sending its inv. mass higher and higher. Thus the Q^{2}-dependence of $\Delta\left(Q^{2}, Q_{0}{ }^{2}\right)$ should give the $\mathcal{M}_{C C}{ }^{2}$ distribution. Since Δ falls faster than any power as $Q^{2} \gg Q_{0}{ }^{2}$ it willenforce $\left\langle\mathbb{M}_{C C}{ }^{2}\right\rangle \sim Q_{0}{ }^{2}$.
We thus arrive at the following interesting conclusion:
The perturbative branching automatically organizes the final partons (at off-shellness $Q_{0}{ }^{2}$) into CC clusters of mass just a few times larger than $Q_{0}{ }^{2}$ and independent of Q^{2}.

One can now postulate that these clusters "fadronize», i.e. produce known light fadrons through a non-perturbative universal process that does not involve much reshuffling of momentum. => «jet-shape variables»computed at partonlevel should reflect those observed experimentally at fiadronic level Example

In order to make this recipe as effective as possible actual value of $Q_{0}{ }^{2}$ should be optimized: sufficiently large in order to trust $p Q C \mathcal{D}$, sufficiently low to have to make minimalguesses on the final hadronization pattern (few GeV looks reasonable)

2.4 Interference and angular ordering

I will be rather brief since this has been discussed at length in some of the seminars.
Consider an elementary step in the branching process and the one with one more soft gluon emitted

Amplitude for latter process is that of former times
a factor ($\mathcal{N B}$: summing amplitudes =>interference effects!)
$g\left(T_{1}^{a} \frac{p_{1} \cdot \varepsilon}{p_{1} \cdot k}+T_{2}^{a} \frac{p_{2} \cdot \varepsilon}{p_{2} \cdot k}\right) \quad$ This shows:
IR singularity when $\mathcal{K} \cdots>$
When p_{1} parallel to p_{2} what counts is $\left(\mathcal{T}_{1}{ }^{a}+\mathcal{T}_{2}{ }^{a}\right)$
G. Veneziano, Cours no. 7

In practice, $p_{1} / / p_{2}$ means that the angle betwe en the two vectors is smaller than at least one of those they form with K In this case, since the sum of the two generators tends to cancel(they correspond to the colour of their common parent) the process is suppressed in this Kinematical region $==>$ IRenfancements are only present for gluons emitted inside two overlapping cones obtained by rotating p_{1} around p_{2} and viceversa. This is the angular ordering due to quantum interference.

Luckily this interference effect does not destroy the probabilistic character of the branching process: it just reduces the phase space available for eachemission

How does it restrict available phase space?

$$
\theta_{1}>\theta_{2}>\theta_{3} \quad \leadsto q_{1}^{2} / x_{1}^{2}>q_{2}^{2} / x_{2}^{2}>q_{3}^{2} / x_{3}^{2} .
$$

$$
q_{2}{ }^{2}<x_{2}^{2} / x_{1}^{2} q_{1}^{2}=z^{2} q_{1}^{2} \text { (stronger than simple } q^{2} \text {-ordering) }
$$

$$
\text { Note difference wrt } \operatorname{DIS} \text { : }
$$

Since x-ordering now opposite of q^{2}-ordering the latter already implies angular ordering
G. Veneziano, Cours no. 7

2.5 S mall-x Gefaviour and multiplic it ies

Angular ordering means basically
$q_{1}^{2} / x_{1}^{2}>q_{2}^{2} / x_{2}^{2}>q_{3}^{2} / x_{3}^{2}$..i.e. $q_{2}^{2}<q_{1}^{2} x_{2}^{2} / x_{1}^{2}=z^{2} q_{1}^{2}$

This implies a modification of the $\mathcal{D G L A P}$ equation into

$$
Q^{2} \frac{\partial D^{i}\left(x, Q^{2}\right)}{\partial Q^{2}}=\sum_{j} \int_{x}^{1} \frac{d z \alpha(?)}{z} \frac{\alpha \pi}{2 \pi} P_{j}^{i}(z) D^{j}\left(x / z, z^{2} Q^{2}\right)
$$

Similar to the equation we encountered for small-x in $\mathcal{D I S}$ (DSL) except for the rescaling of the argument by z^{2}. After inserting also the argument of α, we finally obtain the small- x distribution and total multiplicity.

$$
\begin{gathered}
x F\left(x, Q^{2}\right)=\exp \left(2 \tilde{c} \sqrt{\log (1 / x) \log \frac{\log Q^{2} / \Lambda^{2}}{\log Q_{0}^{2} / \Lambda^{2}}}\right) \\
x D\left(x, Q^{2}\right)=e^{c \sqrt{\log Q^{2} / Q_{0}^{2}}} \exp \left(-c^{\prime} \frac{\left(\log 1 / x-\frac{1}{4} \log Q^{2} / Q_{0}^{2}\right)^{2}}{\left(\log Q^{2} / Q_{0}^{2}\right)^{3 / 2}}\right) \\
c=\sqrt{\frac{\sigma}{\pi \beta_{0}}}
\end{gathered}
$$

The total multiplicity in the jet is dominated by the gaussian peak:

$$
\langle n\rangle \sim e^{c \sqrt{\log Q^{2} / Q_{0}^{2}}}
$$

Both predictions, including the falloff of \mathcal{D} above $x \sim\left(Q_{0}{ }^{2} / Q\right)^{1 / 2}$, are well verified in the data

In order to connect the partonic prediction to realdata we can proceed in two ways:

1. Assemble the final partons in CC pairs and convert those into fadrons via some phenomenologic al recipe. Although the overall normalization is lost we can still check the shape of the x-distribution or the growth of multipicity
2. Keep Q_{0} some what large (compared to Λ) and then interpret each off-shellfinal parton as amini-jet». The above result then tells us how the number of these minijets depends on our "resolution" scale Q_{0}.

- Since $n\left(Q, Q_{0}\right)=n\left(Q, Q_{1}\right) n\left(Q_{1}, Q_{0}\right)=$.. The process is self. similar, like a fractal(jets inside jets, inside jets..)
- Self-similarity eventually ends .. when we reach the QCD confinement scale $\Lambda \ldots$

2.6 Quarkvs. Gluonjets

Because of their larger colour charge gluons radiate more than quarks, about twice as much $\left(\mathcal{C}_{\mathfrak{A}} / \mathcal{C}_{\mathscr{F}}=2 \mathcal{N} \mathfrak{N}^{2} /\left(\mathcal{N}^{2}-1\right)=>9 / 4\right)$ At large \mathcal{N} we can understand this as due to the two colour lines of the gluon radiating inde pendently:

Gluon jets are also softer, e.g. the fastest hadronemerging from a gluon jet should have a smaller $<\gg$ than the fastest hadron coming out of a quarkjet. Also, the le ading hadron in a quarkjet should carry some memory of the quarkflavour, while, of course, a gluon jet is more "democratic "...

Finally, gluon jets have a broader opening angle than quarkjets. This can be seen from the leading order formula:

$$
\frac{\sigma_{2 j e t s}}{\sigma_{T}}=1-4 C_{F, A} \frac{\alpha\left(Q^{2}\right)}{\pi} \log \varepsilon \log \delta_{q, g}
$$

for quark and gluon jets, respectively. Thus, if we want the same fraction of the total x-section with the same fraction of energy (1- ع) in the two jets, we need to take

$$
\delta_{g}=\left(\delta_{q}\right)^{C_{F} / C_{A}}=\left(\delta_{q}\right)^{4 / 9}>\delta_{q}
$$

$\mathfrak{A l l}$ these features are confirmed by MC simulations and can also be seen in the data.

General conclusion of last two lectures: our understanding of small-x physics is better for jet hadronization than for DIS !

Some bibliography on $p Q C D$

1. T. Muta, \mathfrak{F} oundations of $Q C D, \mathcal{W}$ orld Scientific Pub. Co. (1987);
2. Perturbative QCD, ed. A. H. Mueller, World Scientific Pub. Co.(1989)
3. Yu. L. Dokshitzer, V.A. Shoze, A. H. Mueller and S.I. Troyan, Basis of Perturbative QCD, Editions Frontiers (1991)
4. R. K. Ellis, W. J.S tirling and B.R. We bber, QCD and Colfider Physics, Cambridge University Press, 1996

Next week:

Last Lecture: Symmetries and Anomalies Last seminar: Twistors and Gauge theory

