

Pixel Detector TRT Tracke

Un boson nommé Higgs: the experimental challenges of a very special discovery

EXPERIMENT p://atlas.ch

NAME TITIT

TITLE

Fabiola Gianotti, CERN Physics Department Colloque de Clôture de Gabriele Veneziano Collège de France, 24/5/2013

 LHC: 27 km accelerator ring, 100 m below ground, across French-Swiss border
 Two proton beams accelerated in opposite directions Beam energy as of today: 4 TeV → collision energy 8 TeV (x4 Tevatron)
 Design collision energy (to be achieved in 2015): ~ 14 TeV (1 TeV= 10⁻⁷ Joule)
 They collide at four points, where four big experiments have been installed

1st (very successful) LHC run: March 2010- February 2013

France (CNRS/IN2P3 and CEA/Saclay) has contributed in a very crucial way to the four experiments and the accelerator

ATLAS

An historical day : 4th July 2012

accelerators – experiments – Grid computing

a Higgs Boson (but which one...?)

Historic Miles

Global Implite The culmination of a long path ...

4

Few milestones of a long p	ath	
 1984 : First studies for a high-energy pp collider in the LEP 1989 : Start of SLC and LEP e⁺e⁻ colliders 1993 : SSC is cancelled → US physicists join the LHC 	tunnel	
 1994 : LHC approved by the CERN Council 1995 : Top-quark discovered at the Tevatron 1996 : Construction of LHC machine and experiments start 	 > 20 years from conception to start of operation 	
2000 : End of LEP2 2003 : Start of LHC machine and experiments installation 2009 : 23 November: first LHC collisions ($Js = 900 \text{ GeV}$)		
2010 : 30 March: first collisions at √s = 7 TeV 2012 : 1 st May: collision energy to √s = 8 TeV 2012 : 4 th July: discovery of a Higgs-like boson	+ 20 years of physics exploitation ?	
2013 : 14 th Feb: end of "Run 1" \rightarrow start 2-year shut-dowr	n → √s ~ 14 TeV in 2015	

The LHC has required:

innovative technologies (superconducting magnets, cryogenics, electronics, computing, ..)
 new concepts, lot of ingenuity to address challenges and solve problems
 huge efforts of the worldwide community (ideas, technology, people, money)

Unprecedented accelerator and experiments (complexity, technology, performance)

Length : ~ 46 m Radius : ~ 12 m Weight : ~ 7000 tons ~10⁸ electronic channels 3000 km of cables

- □ Size : to measure and absorb high-E particles from the collision
- □ 10⁸ independent sensitive elements ("individual signals"): to track ~1000 particles per event and reconstruct their trajectories with ~10 μ m precision
- Fast response (25-50 ns): to cope with 40 million beam-beam collisions per second
- □ Computing resources: ~ 10 PB of data per year per experiment
- Human resources: 3000 physicists from 38 countries
 - (7 laboratories from IN2P3/CEA, ~ 200 French scientists)

3 examples of the very strong French contribution to ATLAS

Electromagnetic "Accordion" calorimeter: a novel geometry detector (introduced by Daniel Fournier, LAL/Orsay)

Muon Spectrometer: ~ 5500 gas-based devices (mainly drift chambers) covering > 1 football field

AND

Thousands of quality controls of individual components 15 years of tests with beams, 20 years of detector and physics simulations, 8 years of world-wide computing data challenges, 17 Technical Design Reports

VHY ???

The driving motivation has been New Physics at the TeV scale, coming from our theory colleagues (e.g. Grabriele Veneziano)

30 March 2010: first proton-proton collisions at an unprecedented energy \rightarrow exploration of a new energy frontier starts

Since then:

- □ The accelerator, detectors and computing performed beyond expectations
- Huge amount of data recorded and analyzed (ATLAS: 5B events)
- The Standard Model and the known particles have been "rediscovered" and measured in the new energy regime
- Many physics scenarios beyond the Standard Model have been investigated and constrained

July 2012: discovery by ATLAS and CMS of a new Higgs-like particle with mass ~ 125 GeV announced

SUPERB performance of the LHC in the first run \rightarrow one of the key ingredients for the fast discovery of the Higgs boson

ATLAS: very high data-taking efficiency (~ 93.5%) and data-quality (~ 96%)
→ ~ 90% of the delivered luminosity used for physics results (crucial as e.g. H→ 4l is a rare channel)

A huge scientific output

Cross-section measurements of known processes (examples ...)

Test SM at 7-8 TeV; constrain theory predictions; backgrounds to searches
 Good agreement with SM expectation
 Experimental precision starts to challenge theory uncertainty (e.g. tt)

F. Gianotti, Collège de France, 24 May 2013

An historical day : 4th July 2012

accelerators - experiments - Grid computing

Observation of a new particle consistent with a Higgs Boson (but which one...?)

Historic Milestone but only the

GID Since then: A LOT OF PROGRESS ...

Here: most recent ATLAS results based in most cases on full dataset recorded in Run 1. Emphasis is now on property measurements of the new particle

SM Higgs production cross-section and decay modes

To increase sensitivity to specific production processes (\rightarrow measure as many Higgs couplings as possible) events divided into categories, e.g. events with two high-mass forward jets (\rightarrow enhance contribution of VBF process), events with additional leptons (\rightarrow enhance WH/ZH), etc.

ATLAS and CMS calorimetry: the complementarity

Lead-tungstate crystals (homogeneous):
a excellent E-resolution: 2-5%/JE
a no longitudinal segmentation → event
vertex from tracks (more sensitive to pile-up)

Lead/liquid-argon (sampling): ☐ good E-resolution: ~10%/JE ☐ longitudinal segmentation → primary vertex from y direction → maintains good mass resolution in high pile-up conditions

Fine lateral segmentation $\rightarrow \gamma/\pi^0$ separation (background rejection)

Date (Day/Month)

 $H \rightarrow \gamma \gamma$ candidate with $m_{\gamma \gamma}$ = 126.9 GeV

 $E_T (\gamma_1, \gamma_2) = 80.1, 36.2 \text{ GeV}, E_T (j_1, j_2) = 121.6, 82.8 \text{ GeV}, \eta (j_1, j_2) = 2.7, -2.9, m (jj)= 1.67 \text{ TeV}$

Likely from Vector-Boson-Fusion production

 \bar{q}'

Run Number: 204769, Event Number: 24947130 Date: 2012-06-10 08:17:12 UTC

20

$H \rightarrow ZZ^* \rightarrow 4I$ (4e, 4µ, 2e2µ)

$\sigma \times BR \sim 2.5 \text{ fb} \text{ m}_{H} \sim 126 \text{ GeV}$

Very small cross-section, but:

-- mass can be fully reconstructed \rightarrow events cluster in a (narrow) peak -- pure: S/B ~ 1

Events with 4 leptons $p_T^{1,2,3,4} > 20, 15, 10, 7-6$ (e-µ) GeV selected □ Main backgrounds: ZZ^(*) : irreducible

Crucial experimental aspect: high lepton acceptance, reconstruction and identification efficiency down to lowest p_T to capture as much as possible of the (tiny) signal

Huge efforts made on 2012 to improve e[±] reconstruction and identification efficiency at low p_{T} and pile-up robustness paid dividends \rightarrow crucial ingredient for fast discovery

41 mass spectrum after all selections; full data sample

Clear peak at m_H ~ 124.5 GeV
 Probability it comes from background fluctuation: ~ 10⁻¹⁰ → 6.6 σ signal significance (4.4 σ expected from SM H)

	In the region 1	l25 ± 5	GeV			
Observed					32 events	
Expected from background only					11.1 ± 1.4	
Expected from Higgs signal					15.9 ± 2.1	
		4μ	2e2µ	l	4e	
Date	a	13	13		6	
Exp	ected S/B	1.9	~1.3		1.1	
Red	ucible/total B	15%	~50%		50%	

 $2e2\mu$ candidate with $m_{2e2\mu}$ = 123.9 GeV

 p_{T} (e,e, μ , μ)= 18.7, 76, 19.6, 7.9 GeV, m (e⁺e⁻)= 87.9 GeV, m($\mu^{+}\mu^{-}$) = 19.6 GeV 12 reconstructed vertices

Putting all channels together: 10 σ significance or probability that what ATLAS observes comes from background fluctuation: 10^{-24} !

A new phase: measuring the properties of the new particle (only a few examples here ...)

The first 2 questions: is it A Higgs boson ? is it THE SM Higgs boson ? From high-resolution $H \rightarrow \gamma \gamma$ and $H \rightarrow 41$ channels

$m_{\rm H}$ (combined) =125.5 GeV ± 0.2 (stat) $^{+0.5}_{-0.6}$ (syst) GeV

Signal production strength

 μ = measured signal production rate normalized to SM Higgs expectation at m_H = 125.5 GeV

Best-fit value for m_{H} =125.5 GeV: $\mu = 1.3 \pm 0.13$ (stat) ± 0.14 (syst) \rightarrow in agreement with SM expectation

Constraining production modes and couplings (examples ...)

□ 3σ significance for non-vanishing VBF production fraction
 □ evidence that the new particle couples to W and Z as expected
 → first "fingerprint" of a Higgs boson (to accomplish its job → EWSB/Higgs mechanism)
 □ No significant New Physics contributions observed (within present uncertainty)

2nd "fingerprint" of a Higgs boson: it has spin zero

Н→ үү

Spin information from distribution of polar angle θ^* of the di-photon system in the Higgs rest frame

Compare θ^* distribution in the region of the peak for:

- □ spin-0 hypothesis: flat before cuts
- □ spin-2 hypothesis: ~ $1+6\cos^2\theta^* + \cos^4\theta^*$ for Graviton-like (minimal models)

Combining all channels: 2⁺ hypothesis rejected at > 99.9% CL (0⁻ hypothesis rejected at 99.6% CL from $H \rightarrow 4I$)

If this is the first elementary scalar, consequences also for Universe evolution (inflation triggered by a scalar field)

Two additional questions

Why is the Higgs so light?

Is m_H stabilized by ~TeV scale new physics (e.g. SUSY) or is it fine-tuned ?

In the SM, top-loop corrections to m_H diverge as ~ Λ^2 (energy scale up to which the SM is valid)

Searches for stop quarks so far unsuccessful Will continue with more data and energy in 2015++

Searches for physics beyond the SM

Huge number of models and topologies investigated

30

Searches for physics beyond the SM

Huge number of models and topologies investigated

□ searches far from being complete \rightarrow surprises may hide in present data □ $\int s$ today ~ 1.7 smaller than design value and integrated luminosity ~12 smaller \rightarrow 2015++

All limits quoted are observed minus 1 or theoretical signal cross section uncertainty.

The next steps ...

With the data recorded in "Run 1" (~25 fb⁻¹ per experiment):

- □ 4-5 σ from each of H→ $\gamma\gamma$, H→ $|\nu|\nu$, H→ 4| per experiment (in part achieved already) □ ~3 σ from H→ $\tau\tau$ and ~3 σ from W/ZH → W/Zbb per experiment (the latter
 - already achieved at the Tevatron)
- □ Separation $0^+/2^+$ and $0^+/0^-$ at > 4 σ level combining ATLAS and CMS
- Improved measurements of couplings (in particular combining ATLAS and CMS)

Further ahead (present LHC plans):

```
2013-2014: shut-down (LS1)

2015-2017: \int s \sim 14 \text{ TeV}, L ~ 10<sup>34</sup>, ~ 100 fb<sup>-1</sup>

2018: shut-down (LS2)

2019-2021: \int s \sim 14 \text{ TeV}, L ~ 2×10<sup>34</sup>, ~ 300 fb<sup>-1</sup>

2022-2023: shut-down (LS3)

2023- 2030 ?: \int s \sim 14 \text{ TeV}, L ~ 5×10<sup>34</sup>, ~ 3000 fb<sup>-1</sup> (HL-LHC)
```

LHC upgrade: 300 fb⁻¹ at 14 TeV by ~2020 and 3000 fb⁻¹ by ~2030 → significant improvements on Higgs measurements and searches for New Physics

With 100-300 fb⁻¹:

 \Box Mass can be measured to 0.1% (~ 100 MeV) dominated by e/µ/y E-scale systematics

□ Spin/CP can be determined to > 5σ for a pure 0^+ state.

Higgs self-couplings: ~ 3σ per experiment expected from HH \rightarrow bbyy channel with 3000 fb⁻¹; HH \rightarrow bbtt also promising ~ 30% measurement of Λ/Λ_{SM} may be achieved

Note: -- these results are very preliminary (work of a few months) and conservative -- physics potential of LHC upgrade is much more than just Higgs

Summary of the big questions ...

Birth and evolution of a signal

 $H \rightarrow WW^* \rightarrow IvIv$

Conclusions

The first LHC proton run (2010-2012) has been EXTRAORDINARY ! Accelerator, experiments, computing (and people !) have performed beyond "design specifications" during three demanding but very exciting years.

Among the achievements is the crucial discovery of a very special particle, which looks pretty much like the Standard Model scalar. The era of precise measurements of our new friend has started.

These accomplishments are the result of more than 20 years of talented work and extreme dedication of those involved in the LHC project.

More in general, they are the result of the ingenuity, vision, tenacity, painstaking work of the full HEP community (accelerator, instrumentation, computing, experimental physics, theory)

Thank you Gabriele for being among those who have inspired and given us the courage to undertake such a challenging and exciting adventure !

SPARES

Estimated mass from high-resolution $H \rightarrow \gamma \gamma$ and $H \rightarrow 41$ channels:

 $m_{\rm H}$ (combined) =125.5 GeV ± 0.2 (stat) $^{+0.5}_{-0.6}$ (syst) GeV

 $m_{\rm H}(gg) = 126.8 \text{ GeV} \pm 0.2(\text{stat}) \pm 0.7(\text{syst}) \text{ GeV}$

 $m_{\rm H}$ (4l) =124.3 GeV $^{+0.6}_{-0.5}$ (stat) $^{+0.5}_{-0.3}$ (syst) GeV

Probability for same particle: 1.5-8%

Mass measurement

Searches for MSSM Higgs bosons

 $H \rightarrow WW^{(*)} \rightarrow |v|v$ (evev, $\mu\nu\mu\nu$, $e\nu\mu\nu$)

Large cross section

□ However: 2v in final state \rightarrow mass peak cannot be reconstructed \rightarrow "counting channel"

□ 2 isolated opposite-sign leptons, p_T > 25, 15 GeV

- Main backgrounds: WW, top, Z+jets, W+jets
 - → large E_T^{miss} , $m_{II} \neq m_Z$, b-jet veto ..+ topological cuts: p_{TII} , m_{II} , $\Delta \phi_{II}$ (smaller for scalar)

Crucial experimental aspects:

- \Box understanding of E_T^{miss}
- □ very good modeling of background in signal region → use signal-free control regions in data to constrain MC → use MC to extrapolate to signal region

After all selections, √s=8 TeV				
Observed:	1195 events			
expected from				
background only	1036 ± 100			
expected from				
signal m _H =125 GeV	148 ± 30			

Broad excess, extending over > 50 GeV in mass, due to poor mass resolution m_{H} =125 GeV: 3.7 σ (3.8 σ) observed (expected)

$H \rightarrow TT \rightarrow T_{lep}T_{lep}, T_{lep}T_{had}, T_{had}T_{had}$

- Important for coupling measurements
- □ Huge backgrounds: Z → TT, top, fakes
 Dominant/irreducible Z→ TT from "embedded" Z → µµ data (µ replaced by simulated T)
 → event modeling from data; signal-free sample for background determination
 - Events split in categories, 0, 1, 2 (VBF, VH) jets, plus boosted
 - \rightarrow higher sensitivity and S/B with \ge 1 jet
 - \rightarrow TT mass resolution (13-20%) better for boosted system (\rightarrow better Z/H separation)
 - □ After all cuts: expect ~ 250 events at 8 TeV; S/B ~ 0.5-1% overall (4-10% VBF)

$W/ZH \rightarrow Ivbb$, IIbb, vvbb

 σ x BR ~ 150 fb m_H~ 125 GeV

2 2 b-tagged jets + 0/1/2 leptons; p_T^V / E_T^{miss} categories as larger S/B for boosted Higgs

Higgs discriminating variable is reconstructed m_{bb} mass: ~ 16% resolution

Is the Higgs mass stabilized by New Physics?

Searches for physics beyond the SM

Huge number of models and topologies investigated

F. Gianotti, Collège de France, 24 May 2013

Searches for the SM scalar have guided conception, design and technological choices of ATLAS and CMS:

one of the primary LHC goals

among the most challenging processes → have set some of the most stringent performance (hence technical) requirements: lepton identification and energy and momentum resolution, b-tagging, E_{T}^{miss} measurement, forward-jet tagging, etc.

	ATLAS	CMS		
MAGNET (S)	Air-core toroids + solenoid 4 magnets Calorimeters in field-free region	Solenoid 1 magnet Calorimeters inside field	CMS: excellent μ momentum resolution (H \rightarrow 4 μ !) but	
TRACKER	Si pixels+ strips TRT \rightarrow particle identification B=2T $\sigma/p_T \sim 5x10^{-4} p_T \oplus 0.01$	Si pixels + strips No particle identification B=4T $\sigma/p_T \sim 1.5 \times 10^{-4} p_T \oplus 0.005$	B=4T solenoid constrains HCAL radius	
EM CALO	Pb-liquid argon $\sigma/E \sim 10\%/\sqrt{E}$ longitudinal segmentation	PbWO ₄ crystals $\sigma/E \sim 2-5\%/\sqrt{E}$ no longitudinal segmentation	H→ γγ: CMS: E-resolution ATLAS: γ "pointing" and γ/jet separation	
HAD CALO	Fe-scint. + Cu-liquid argon (10 λ) $\sigma/E \sim 50\%/\sqrt{E \oplus 0.03}$	Cu-scint. (> 5.8 λ +catcher) $\sigma/E \sim 100\%/\sqrt{E \oplus 0.05}$	ATLAS: excellent HCAL \rightarrow jets and	
MUON	Air $\rightarrow \sigma/p_T \sim 7$ % at 1 TeVstandalone	Fe $\rightarrow \sigma/p_T \sim 5\%$ at 1 TeV combining with tracker	$E_{T}^{miss} (H \rightarrow IvIv)$	

ATLAS electromagnetic calorimeter

Lead/liquid-argon detector with a novel Accordion geometry (introduced by Daniel Fournier, LAL/Orsay) to achieve a fast response ~ 50 ns

- □ good E-resolution: ~10%/JE
- fine longitudinal and lateral segmentation
- \rightarrow vertex reconstruction (mass resolution)
- $\rightarrow \gamma/\pi^0$ separation (background rejection)

Reconstruction of primary vertex from γ direction \rightarrow maintains good mass resolution in high pile-up conditions

F. Gianotti, Collège de France, 24 May 2013

ATLAS and CMS calorimetry: the complementarity

CMS

Lead-tungstate crystals (homogeneous):
a excellent E-resolution: 2-5%/JE
a no longitudinal segmentation → event
vertex from tracks (more sensitive to pile-up)

ATLAS

Lead/liquid-argon (sampling): □ good E-resolution: ~10%/JE □ longitudinal segmentation → vertex from photon direction → pile-up robust

α=opening angle of the two photons

High pile-up: many vertices distributed over σ_Z (LHC beam spot) ~ 5-6 cm \rightarrow difficult to know which one has produced the yy pair

Primary vertex from:
EM calorimeter longitudinal (and lateral) segmentation
tracks from converted photons

Measure γ direction with calo \rightarrow get Z of primary vertex

Note:

- Calorimeter pointing alone reduces vertex uncertainty from beam spot spread of ~ 5-6 cm to ~ 1.5 cm and is robust against pile-up
- → good enough to make contribution to mass resolution from angular term negligible
- Addition of track information needed to reject fake jets from pile-up in 2j categories

Age distribution of the ATLAS population

55

