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Cordes dans un fond non banal et action efficace 

• Strings in non-trivial backgrounds
• Imposing local WS symmetries
• The effective action and its 2 meanings
• The effective action and its 2 expansions



SG = −T

2

∫
d2ξ
√
−γγαβ(ξ)∂αXµ(ξ)∂βXν(ξ)Gµν(X(ξ))
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Bosonic strings in non-trivial backgrounds 
We have already seen how to generalize the NG action to a 
non-trivial space-time background Gμν(x). 

 To extend this construction to other backgrounds it is easier 
to start from Polyakov’s formulation. 
For a closed string in a pure metric background we have:

Note that, in the quantum action S/h, only the combination 
Gμν/ls2 appears (it has dimensions length-2). This will provide 
useful checks later. The local D=2 symmetries are present for 
any Gμν. Which other backgrounds can we add? All we have to 
require is to preserve the local WS symmetries at the quantum 
level. Let us proceed by analogy with the point-particle case.



SB = −T

2

∫
d2ξεαβ∂αXµ(ξ)∂βXν(ξ)Bµν(X(ξ))

Spoint
A = q

∫
dτ ẋµ(τ) Aµ(x(τ)) = q

∫
dxµ(τ) Aµ(x(τ))

19 mars 2010 G. Veneziano Cours XI 3

This action is invariant under the gauge transformation     
A--> A + dΛ . 

In perfect analogy, a string naturally couples to a 2-form 
Bμν=-Bνμ  without invoking a 2D-metric:

with εαβ the Levi-Civita symbol in D=2. This action is 
invariant under B --> B + dΛ where Λ is a one-form. 

This can be easily generalized to p-branes...

A charged point-particle couples naturally to a vector 
potential (a 1-form) without even invoking a 1D-metric:



1
4π

∫
d2ξ
√
−γR(γ) = 2(1− g)

SΦ =
1
4π

∫
d2ξ
√
−γR(γ)Φ(X(ξ))
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Can we write anything else that satisfies classically the 2D 
local symmetries, and in particular Weyl invariance? The only 
possibility appears to be:

but only if the field Φ(x), called the dilaton, is a constant. 

In that case, the integral is proportional to the Einstein-
Hilbert action, which, in D=2, has a topological meaning and 
thus is clearly Weyl-invariant. As already discussed:

It is related to the genus g of the Riemann surface described 
by the metric γαβ. Thus, if Φ is constant, SΦ = 2Φ(1-g); if it 
isn’t, SΦ is non-trivial and classically not Weyl-invariant.
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Let’s put anyway all 3 terms together and write the action for 
a string in a metric, antisymmetric and dilaton background as:

Under what conditions for the background fields can we 
statisfy the conditions of 2D-rep. and Weyl invariance at the 
quantum level?
This is, in general, a highly non trivial problem. We know one 
solution: Minkowski spacetime, vanishing B, and constant Φ, 
provided that D takes a critical value (D=26, 10).



19 mars 2010 G. Veneziano Cours XI 6

This is the string we have been discussing so far with just 
one small additional point.
When the above action is inserted in the (Euclidean) path 
integral it will weight the contribution of each Riemann 
surface of genus g with a factor exp (-2Φ(1-g)) hence with 
an extra factor exp(2Φ) for each extra string loop. 
Therefore exp(2Φ) plays, in QST, the same role that α 
plays in QED (or in the SM).  It is the loop-counting 
parameter. 
In QED a square-root ofα also appears in the scattering 
amplitude for each emitted (or incoming) photon.
As we shall see, a factor exp(Φ) will be associated with 
each external closed string.
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In order to look for more general solutions we have to resort 
to some kind of perturbation theory around the “trivial” 
backgrounds.
We can do that by expanding G(X) and B(X) around a 
particular point x. This generates terms in the action that 
are cubic, quartic and so on in the string coordinates. 
(For a Φ(x) which is at most quadratic in x, the action 
remains quadratic, see an example below).
From the point of view of a 2-dimensional field theory we go 
from a free theory to an interacting one where the effective 
coupling is ls/L, with L the typical length scale of the 
geometry (scale over which the backgrounds change by O(1)). 
New contributions to the anomaly (or to the anomaly-
cancellation conditions) will come as a power expansion in    
(ls/L)2 ~ α’. 

This method is referred to as the α’ expansion.
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The possible breaking of Weyl invariance can be formulated 
in terms of 2D β-functions in analogy with what we do when 
we describe the breaking of scale invariance in QFT in terms 
of some functions (called β-functions) of its various 
couplings. 
Since in QST the backgrounds, G, B etc. play the role of 
couplings there is a β-function associated with each 
background field.
Setting all β-functions to 0 will give the conditions to be 
satisfied by the backgrounds in order to preserve all the 
crucial local 2D symmetries. 
In each one of these backgrounds string quantization should 
be free of pathologies (although it could be quite non-trivial).



βΦ =
D −Dc

3
+ l2s

(
∂µΦ∂µΦ− 1

2
DµDµΦ− 1

24
HµνρH

µνρ

)
+ O(l4s) = 0

βG
µν = l2s

(
Rµν +

1
4
HµρσH ρσ

ν − 2DµDνΦ
)

+ O(l4s) = 0

βB
µν = l2s (DρHµνρ − 2∂ρΦHµνρ) + O(l4s) = 0 ; Hµνρ = ∂µBνρ + cyclic
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A non trivial calculation leads to the following equations to 
leading non-trivial order inα’ (ls2):

We can now reinterpret in a more satisfactory way the 
meaning of D=Dc. If D≠Dc, there is no solution to the above 
equations with nearly constant backgrounds. All solutions will 
have necessarily some fields whose space-time variations are 
so large to compensate for the extra factor ls2. However, in 
that case, we are not allowed, in principle, to neglect the 
higher-order corrections (e.g. O(ls4)) and we cannot be sure, 
in general, that we do have a solution. There are fortunately 
exceptions.



QµQµ =
Dc −D

3l2s
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Take a background in which the metric is Minkowskian (but 
with D≠Dc), B=0, and Φ = QμXμ where Qμ is a constant 
vector. At the order we are computing we find that all the 
β-functions are zero provided we take:

The linear-dilaton case 

This shows how a classically non-Weyl invariant term in the 
action can be used to give back WI at the quantum level! In 
fact this solution turns out to be exact (at g=0 level) since a 
linear dilaton keeps the action quadratic. Necessarily, 
however, the effective coupling of string theory grows large 
(either at space- or at time-like infinity) and one has to 
worry about loop corrections. The WS theory of this 
background is the so-called Liouville theory and has been 
studied in great detail (e.g by Gervais).



Γeff = −
(

1
ls

)D−2∫
dDx

√
−Ge−2Φ

[
4(D −Dc)

3l2s
+ R(G)− 4∂µΦ∂µΦ +

1
12

H2 + . . .

]
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The effective action of QST
A very interesting property of our β-function equations is 
that they define what is called a “gradient flow”: the β-
functions are derivatives of a function(al).
That means that they correspond to the eom that follow 
from an effective action (i.e. by setting to zero its variation 
wrt the various fields). Up to the order we have considered 
the effective action reads:

1. For the dots, see below.
2. The dilaton appears with the “wrong” sign, but there is 
nothing wrong with this, see also below.
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Some interesting properties of Γeff 
1. The dilaton appears through an overall factor multiplying 

something that can only depend on its derivatives. This is 
as expected since, if Φ  is constant, the only dependence 
on Φ must be an overall factor exp (-2Φ(1-g)).

2. Γeff contains no arbitrary dimensionless parameters and 
just one dimensionful one, ls. Actually, even ls can be 
eliminated if one uses, instead of G, B, Φ, the rescaled 
fields ls-2 G, ls-2 B, Φ. Again, this is as expected.

3. Γeff is general covariant. It is also invariant under B--> B
+dΛ. Indeed, B only enters through its field strength H = 
dB. We will come back to the symmetries of Γeff. 
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The two meanings of Γeff

The effective action actually has two distinct meanings. The 
first is the one we have just said: it generates (as eom) the 
conditions to be satisfied by the background fields in order 
to preserve the 2D local symmetries of string theory.
The second meaning is a more familiar one for an effective 
action: Γeff  can be used to compute the couplings of various 

massless particles and their scattering amplitudes as an 
expansion in powers of energy (Cf. zero-slope limit).
It is amazing that these two concepts get related in string 
theory.
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There is an intuitive reason (Polyakov): the breaking of 
scale-invariance on the WS comes from short-distances on 
the WS, say zi -->zj for two external particles. But this is 
precisely the region that produces poles in the S-matrix due 
to the coupling of particles i and j to a third one, k.
This is precisely the coupling one can compute from the 
effective action.

zi = zjji
k

i j

zjzi



e−2Φ(δφ)n = e(n−2)Φ(δφcan)n ≡ gn(δφcan)n
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Where is the extra factor exp(Φ) for each external closed 
string? This is not hard to get. We have to remember the 
the single-particle states are associated with properly 
normalized fields, fields that appear in the action with 
canonical kinetic terms. 
This is not the case for the original background fields 
because of the overall factor exp(-2Φ). In order to define 
canonical fields we have to expand the action to quadratic 
order in the fluctuations and normalize the fluctuation  by 
absorbing in it a factor exp(-Φ). If we now rewrite a 
generic interaction term coming from Γeff in terms of the 
normalized fields we get the claimed result.



1
!SEH =

(
1
lP

)D−2∫
dDx

√
−g(x)

(
Λ− 1

2
R(g)

)
; 8πGN! ≡ lD−2

P

19 mars 2010 G. Veneziano Cours XI 16

A theory of gravity but not Einstein’s!
In D dimensions, the analogue of the Einstein-Hilbert action 
takes the form:

while in QST we found:

Are they equivalent up to some field redefinition? The 
answer is obviously no, even if we set H=0. QST gives a 
scalar-tensor theory of a Jordan-Brans-Dicke kind!

Γeff = −
(

1
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)D−2∫
dDx

√
−Ge−2Φ
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4(D −Dc)

3l2s
+ R(G)− 4∂µΦ∂µΦ +

1
12

H2 + . . .

]
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For a constant Φ we can identify lPD-2 with exp(2Φ) lsD-2 but 

a massless dilaton still produces long-range interactions that 
violate the equivalence principle: the dilaton, having spin 
zero, couples (non universally!) to mass rather than to energy 
and produces violations of UFF (T. Taylor and GV). 
This is a real threat to QST, making it vulnerable even to 
long-distance/low-energy experiments. In fact, at tree-level, 
string theory is already ruled out by present precision tests 
of the EP (reviewed in last year’s seminar by T. Damour).

Γeff = −
(

1
ls

)D−2∫
dDx

√
−Ge−2Φ

[
4(D −Dc)

3l2s
+ R(G)− 4∂µΦ∂µΦ +

1
12

H2 + . . .

]



Γeff = −
(

1
ls

)D−2∫
dDx

√
−Ge−2Φ

[
4(D −Dc)

3l2s
+ R(G)− 4∂µΦ∂µΦ +

1
12

H2 + O(l2s)
]

+
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1
ls

)D−2∫
dDx

√
−G [. . . ] + O(e2Φ)
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The two expansions of Γeff

We have (roughly) seen how quantization of (integrating 
over) the string coordinates produces potential anomalies 
that have a natural expansion in powers of ls.
We have also seen that integrating over the 2D metric 
produces another expansion in powers of exp(2Φ).

Therefore Γeff has a double perturbative expansion:

One expansion has a QFT analogue. The other does not and 
has the virtue of making the former much better!



(
loop
tree

)
∼ GNΛD−2

UV →
(

lP
ls

)D−2

= exp(2Φ)
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This effective action modifies gravity at large distances 
(which is dangerous but hopefully cured by loop and non-
perturbative corrections) and also, of course, at short 
distances O(ls). 
These latter modifications make loop corrections well 
defined in the UV. Indeed, one gets their correct order of 
magnitude, exp(2Φ), by computing loops as in a QFT but with 

a short distance cutoff given by the string length. 
Here is an example of a quantum-gravity loop correction:

which is roughly of the same order as a gauge-loop 
correction.


