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Up to the 1984 paper by Green and Schwarz, one knew 
about 3 (apparently) consistent (no ghost, no tachyon) 
string theories: Type I, IIA, IIB. All had SUSY.
Two of them (I and IIB) had chiral fermions and in Type I 
one could even add a large gauge symmetry like SO(16) (a 
leading candidate “GUT” for unifying SU(3)xSU(2)xU(1))
... but this is not yet the end of the story.
Let us first recall the massless spectra of each of these 
theories.

From last slide of last week.....

For a popular book on the SM and string theory:
Brian Greene, “L’Univers élégant”
 (Editions Robert Laffont, 1999)
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Bosons: a massless vector with (D-2) = 8 physical 
components. It belongs to the 8v rep. of SO(8). 
Fermions: a Majorana-Weyl spinor in D=10. Normally a D=10 
spinor has 2D/2 = 25 = 32 components, but the MW 
conditions bring them down to 8. It belongs to the 8c or 8s 
rep. of SO(8) (depending on the eigenvalue of γ11). 
(SO(8) has 3 inequivalent 8-dimensional reps: 8v, 8c,8s) 

Bosons Fermions

Type I (open sector)
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One takes opposite chirality for left and right movers:
(8v+8c)x(8v+8s) = 8vx8v + 8cx8s + 8vx8s + 8cx8v =
(1+35v+28)NS-NS + (8v+56v)R-R +(8c+56c)NS-R + (8s+56s)R-NS  

Two NS vectors lead to a scalar (the dilaton), a symmetric 
2-index tensor (the graviton) and a 2-form (Bµν).
Two R-spinors give a vector C1 and a 3-form C3 (with 
8x7x6/3! = 56 components). 
The NS-R & R-NS give 2 gravitinos and 2 dilatinos of 
opposite chirality. 

Type IIA (non chiral)
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(8v+8c)x(8v+8c) = 8vx8v + 8cx8c + 8vx8c + 8cx8v =
(1+35v+28)NS-NS + (1+28 +35c)R-R +(8s+56s)NS-R + (8s+56s)R-NS  

In words: NS-NS as in Type IIA. Two R-spinors give a 
scalar C0 , a 2-form C2 (with 8x7/2! = 28 components) and a 
self-dual 4-form C4 (with 8x7x6x5/2x4! = 35 components). 
The NS-R & R-NS give 2 gravitinos and 2 dilatinos of the 
same chirality. 

Closed string sector of Type I (chiral)
It coincides with a particular subsector of Type IIB: 
(1+35v)NS-NS + (28)R-R +(8s+56s)NS-R+R-NS 

dilaton, graviton, C2 (of GS anomaly cancellation!) and 
chiral fermions.

Type IIB (chiral)
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End of a dream, zero-slope 
limit and the SS proposal

Loops in QFT and QST 

The GS breakthrough, and the 
first revolution

Strings in non-trivial 
backgrounds: effective action

The first string revolution

6
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We first discussed the phenomenological shortcomings of 
string theory (in particular its softness) and how it could not 
stand the competition of QCD. 
We then considered the zero-slope (or low-energy) limit of 
string theory. Gauge and gravitational interactions (as 
described by gauge theories and GR) emerge as effective low-
energy approximations.
This motivated Scherk and Schwarz’s 1974 proposal that 
string theory should rather be considered as an extension of 
the SM and of GR for the description of the elementary 
particles appearing in those theories, the gauge bosons, the 
graviton, the fermions etc.
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The proposal did not find a resonance in the scientific 
community for about 10 years.
One problem with it was that it looked impossible to have a 
string theory with chiral fermions in D=4 (as demanded by the 
SMEP) and yet unaffected by gauge and/or gravitational 
anomalies.
The situation changed drastically in 1984 when M. Green and 
J. Schwarz found that all those anomalies cancel in Type I 
string theory if one took SO(32) as gauge group (see seminar 
#4 by PDV).
The anomalies that Green and Schwarz managed to cancel are 
well-known in QFT (they come at loop level) but take a “new 
look” in string theory since also loops do. 
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Σn=Im
n

i(T † − T ) = 2ImT = T †T

In QFT loops come out naturally from its formalism . 
Physically, loops are needed to ensure unitarity of the S-
matrix. Writing S=1+iT unitarity (S+ S = 1) gives:

In pictures:

Even if the blobs on the rhs are tree diagrams this will 
generate loops for the lhs. 

Loops in QFT 

9
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 In QFT books, in order to go over to a relativistic quantum 
theory where real and virtual particle production is allowed, 
one abandons 1st quantization techniques and perform a so-
called 2nd quantization. The coordinates xµ become c-numbers 
while the fields φi(xµ) become operators.

How do loops appear in string theory? The quantum fields are 
NOT some spacetime fields in D = 10 but rather the string  
coordinates Xµ, ψµ and the 2D metric γαβ, all seen as functions 
of the two world-sheet coordinates (what is usually referred 
to as 1st quantization).
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It turns out that in QST, at least in perturbation theory, one 
can introduce the equivalent of QFT’s loops while staying all 
the time within a 1st quantization framework. 
This amounts to working with a finite number of quantum 
fields in D=2, an immense simplification. How is this possible?

If we try to do the same in QST we end up with String Field 
Theory, a QFT involving an infinite number of spacetime 
fields, one for each state of the string. 
There have been attempts to construct such a theory, with 
some interesting conceptual results, but also a lot of 
technical complications.



Z ∼
�

..

�
[dγαβ(ξ)][dXµ(ξ)][dψµ(ξ)]exp(−SP )

SP = −T

2

�
d2ξ
√
−γγαβ(ξ)∂αXµ(ξ)∂βXν(ξ)Gµν(X(ξ)) + . . .
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Consider a Feynman path integral approach to string 
quantization starting from a Polyakov-like action:

and look first at the integral over the 2-metric γαβ.

At first sight such integral should be trivial since 2D 
reparametrization plus Weyl invariance should allow to gauge-
fix completely γαβ. This is certainly true locally but there is a 
“global obstruction”.



1
4π

�
d2ξ
√
−γR(γ) = 2(1− g)
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A well-known theorem states that : 

where g is the genus of the 2D Riemann surface (g = 0 for the 
sphere, g = 1 for the torus, etc.) whose geometry is given by 
γαβ. Fixing globally γαβ would mean fixing the genus of the 
surface! 

Instead, the functional integral over the 2D metric naturally 
splits into a sum of functional integrals each representing 
Riemann surfaces of a given genus g. Precisely this sum over g 
corresponds to the loop expansion in QFT! QST has managed 
to introduce QFT’s loops without invoking any 2nd quantization!
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Loop expansion for closed string collisions

Closed strings attach at points on the Riemann surface. These 
are just the Koba-Nielsen variables zi  over which one had to 
integrate in the DRM. 

+ + + ...

a vertex correction a tadpole

sphere torus pretzel
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Modular Invariance
Things are actually more complicated.  For a given g, one has to 
find out what are the integration variables after gauge fixing. 
1. For the sphere there is a residual invariance under 
projective O(2,1) transformations that allows to fix 3 KN 
coordinates (exactly what we had in the DRM!).
2. For g = 1 (torus) there is still an integration over the 
complex parameter τ that characterizes each torus.

2πτ
2π

τ-plane

3. For g > 1 there is an integration over 3(g-1) complex 
parameters that characterize the Riemann surface.



τ → p τ + q

r τ + s
; p, q, r, s ∈ Z ; ps− qr = 1
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For the torus (one loop), there is still a discrete group of 
transformations that leaves the torus invariant. This is the 
group of modular transformations:

Such a transformation maps the same torus in the complex 
τ-plane an infinite number of times leading (again!) to an 
infinite result if we were to integrate over the whole 
complex plane. We should only take one region e.g. the so-
called fundamental region. This region nicely avoids the point 
τ = 0 that turns out to be associated (in a naive QFT limit) 
with the UV region. This is how, technically, string theory 
avoids UV infinities!
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Fundamental region for the torus (shaded) 

Im τ

Reτ

Reτ=-1/2 Reτ=1/2

|τ|=1
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Modular invariance is as essential for the consistency of 
string theory as Weyl and reparametrization invariance 
(they are all parts of the gauge invariances of ST). As it 
turns out, imposing modular invariance at the one-loop level 
eliminates the gauge and gravitational anomalies (also one-
loop effects!) that the GS mechanism cancels by a brute-
force calculation (see seminar #4 of PDV).
The search for consistent QSTs is therefore reduced to 
the problem of finding theories that respect modular 
invariance.
This is how the two consistent heterotic string theories 
have been found!
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The Heterotic String
The heterotic string starts from the observation that, for 
closed strings, one can impose different conditions on left and 
right movers. What happens if we try to combine a 
superstring theory for right-movers with a bosonic string for 
left-movers?
Consistency with 2D-anomaly cancellation requires D=10 for 
the right movers and D=26 for the left-movers. How can we 
make sense of such a situation? The answer is to use the 
compactification idea for the 16 = 26-10 extra left-moving 
bosonic coordinates and to go to O(ls) compactification radii.
Consistency with modular invariance constrain the lattice of 
left-momenta to be euclidean, even (pL2= 4n/α’) and self-dual.

Such lattices are rare. They only exist for d=8n, but, 
fortunately for us, d=16!



Γ8 : (n1, n2, . . . n8) or (n1 +
1
2
, n2 +

1
2
, . . . n8 +

1
2
) with

�

i

ni even
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In fact, in d=8 there is only one even self-dual lattice:

It has 240 vectors of length2 = 2 and is related to the 
exceptional group E8. In d=16 there are two distinct lattices. 
They give rise to the 2 consistent heterotic strings. Their 
light spectrum contains massless vectors (from the kL2= 0,2 
states, see next lecture), the Lorentz index being carried by 
the right-moving part, the gauge label by the left movers. 
They fill either the adjoint representation of SO(32) or the 
one of E8xE8, both of dimensionality 496 (= 2x(240+8)).
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HO and HE spectra (chiral)
Quantum numbers are given by multiplying the left and
right moving quantum numbers (Lorentz, gauge):

Interestingly, for the SO(32) case the above supersymmetric
spectrum coincides with the one of the SO(32) Type I string
(this is no longer true for the massive states). 

Bosons: [(8v, 1)+(1, 496)]x(8v, 1) = (1+28+35, 1) + (8v, 496)
Fermions: [(8v, 1)+(1, 496)]x(8c, 1) = (8s+56, 1) + (8c, 496)

In conclusion, we arrived, so far, at the definition of 5 
consistent (no ghost, no tachyon, modular invariant) string 
theories. They are all supersymmetric, live in D=10, and 
some of them can lead to chiral fermions in D=4 after 
compactification (= phenomenologically interesting).



SG = −T

2

�
d2ξ
√
−γγαβ(ξ)∂αXµ(ξ)∂βXν(ξ)Gµν(X(ξ))
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Bosonic strings in non-trivial backgrounds 

For a string in a pure metric background we have:

Can other background fields can interact with the string? All 
we have to require is to preserve the local WS symmetries at 
the quantum level. Let us proceed by analogy with the point-
particle case.



SB = −T

2

�
d2ξ�αβ∂αXµ(ξ)∂βXν(ξ)Bµν(X(ξ))

Spoint
A = q

�
dτ ẋµ(τ) Aµ(x(τ)) = q

�
dxµ(τ) Aµ(x(τ))
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This action is invariant under the gauge transformation     
A--> A + dΛ  
In perfect analogy, a string naturally couples to a 2-form Bµν 
= -Bνµ  without invoking a 2D-metric:

with εαβ the Levi-Civita symbol in D=2. This action is 
invariant under B --> B + dΛ where Λ is a 1-form. 
This generalized to p-branes... see later.

A charged point-particle couples naturally to a vector 
potential, a 1-form (without even invoking a 1D-metric):



1
4π

�
d2ξ
√
−γR(γ) = 2(1− g)

SΦ =
1
4π

�
d2ξ
√
−γR(γ)Φ(X(ξ))
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Can we write anything else that satisfies classically the 2D 
local symmetries, and in particular Weyl invariance? The only 
possibility appears to be:

but only if the field Φ(x), called the dilaton, is a constant. 
 As already discussed:

Thus, if Φ is constant, SΦ = 2Φ(1-g); if it isn’t, SΦ is non-trivial 
and classically not Weyl-invariant.



S = −T

2

�
d2ξ
√
−γ

�
∂αXµ∂βXν

�
γαβGµν +

�αβ

√
−γ

Bµν

�
− 1

2πT
R(γ)Φ

�
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Let’s put anyway all 3 terms together and write the action for 
a string in a metric, antisymmetric and dilaton background:

Under what conditions for the background fields G, B, and Φ 
can we satisfy the conditions of 2D-rep. and Weyl invariance 
at the quantum level?
This is, in general, a highly non trivial problem. We know one 
solution: Minkowski spacetime, vanishing B, and constant Φ, 
provided that D takes a critical value (D=26, 10).
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This is the string we have been discussing so far with just 
one small additional insight.
When inserted in the (Euclidean) path integral the above 
action will weight the contribution of a Riemann surface of 
genus g with a factor exp (-2Φ(1-g)) hence with an extra 
factor exp(2Φ) for each extra string loop. Therefore exp(2Φ) 
plays, in QST, the same role that α plays in QED.  It is the 
loop-counting parameter. 
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In order to look for more general solutions we resort to 
perturbation theory around the “trivial” backgrounds.
We expand the background fields around a particular point x. 
This gives terms containing derivatives of the backgrounds 
and which are cubic, quartic etc. in the string coordinates. 
In terms of a 2-dimensional field theory we go from a free 
theory to an interacting one where the effective coupling is 
ls/L, with L the typical length scale of the geometry*) . New 
contributions to the anomaly will come as a power expansion 
in (ls/L)2 ~ α’. 
This method is referred to as the α’ expansion. The 
conditions for having no anomaly are written as the vanishing 
of some β-functions (by analogy with QFT).

ls ≡
√
2α�� is the so-called string length parameter

a fundamental length characterizing QST.
*)



βΦ =
D −Dc

3
+ l2s

�
∂µΦ∂µΦ− 1

2
DµDµΦ− 1

24
HµνρH

µνρ

�
+ O(l4s) = 0

βG
µν = l2s

�
Rµν +

1
4
HµρσH ρσ

ν − 2DµDνΦ
�

+ O(l4s) = 0

βB
µν = l2s (DρHµνρ − 2∂ρΦHµνρ) + O(l4s) = 0 ; Hµνρ = ∂µBνρ + cyclic
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A non trivial calculation leads to:

We can now see the meaning of D=Dc. If D≠Dc, there is no 
solution with nearly constant backgrounds. 



Γeff = −
�

1
ls

�D−2�
d

D
x
√
−Ge

−2Φ

�
4(D −Dc)

3l2s

+ R(G)− 4∂µΦ∂
µΦ +

1
12

H
2 + . . .

�
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The effective action of QST
A very interesting property of the β-function equations is 
that they correspond to the eom that follow from an 
effective action . Up to the order we have considered: 

1. The dilaton appears through an overall factor multiplying 
something that can only depend on its derivatives. This is 
as expected since, if Φ  is constant, the only dependence on 
Φ must be an overall factor exp (-2Φ(1-g)).

2. Γeff contains no arbitrary dimensionless parameters and 
just one dimensionful one, ls. 

3. Γeff is general covariant and also invariant under B--> B+dΛ. 
Indeed, B only enters through its field strength H = dB.  
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The two meanings of Γeff

The effective action actually has two distinct meanings. 
1. It generates (as eom) the conditions to be satisfied by 
the background fields in order to preserve the 2D local 
symmetries of string theory.
2. Γeff  can be used to compute the couplings of various 
massless particles and their scattering amplitudes as an 
expansion in powers of energy (Cf. zero-slope limit).
It is amazing that these two concepts get related in string 
theory.



1
�SEH =

�
1
lP

�D−2�
dDx

�
−g(x)

�
Λ− 1

2
R(g)

�
; 8πGN� ≡ lD−2

P
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A theory of gravity but not Einstein’s!
In D dimensions, the analogue of the Einstein-Hilbert action 
takes the form:

while in QST we found:

 QST gives a scalar-tensor theory of a Jordan-Brans-Dicke 
kind! Like JBD can be tested and contradicted!

Γeff = −
�

1
ls

�D−2�
d

D
x
√
−Ge

−2Φ

�
4(D −Dc)

3l2s

+ R(G)− 4∂µΦ∂
µΦ +

1
12

H
2 + . . .

�



Γeff = −
�

1
ls

�D−2�
dDx

√
−Ge−2Φ

�
4(D −Dc)

3l2s
+ R(G)− 4∂µΦ∂µΦ +

1
12

H2 + O(l2s)
�

+
�

1
ls

�D−2�
dDx

√
−G [. . . ] + O(e2Φ)
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The two expansions of Γeff

We have seen how quantization produces potential anomalies 
that have a natural expansion in powers of ls.
We have also seen that integration over the 2D metric 
produces another expansion in powers of exp(2Φ).
Γeff encodes both effects and thus has a double expansion:

One expansion has a QFT analogue. The other does not and 
has the virtue of making the former much better defined!


