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Naissance de la Théorie des Cordes

• Missed hints
• The Nambu-Goto action
• Simplest classical string motions
• GGRT quantization
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Missed hints of an underlying string ?

1. From linear Regge trajectories 
2. From duality diagrams
3. From the harmonic oscillators
4. From Q(z) and its correlators
5. From the DDF «transverse» states
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From linear Regge trajectories

−n

J/h

s=M2

α’ = dJ/dM2  ~ 10-13 cm/GeV ~ constant. 
Its inverse, 1013 GeV/cm,  has dimensions of a string tension 
(NB, c=1 but no h needed)!

1

Typical trajectories in potential 
scattering 

(or in the QFTs of the time):
DRM’s

trajectory
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From the harmonic oscillators
This was certainly the clearest hint since a string is a 
collection of harmonic oscillators whose frequencies are 
multiples of a fundamental frequency.

From DDF «transverse» states
The (small) vibrations of a string are orthogonal to the 
string itself: the number of physical dof should therefore 
be proportional to (D-2), like for the DDF states.

From Q(z) and its correlators
The commutator of two Q’s looks like that of scalar fields 
of a QFT in D=2.



Sp = −mc

∫
ds = −mc

∫
dτ

√
−dxµ(τ)

dτ

dxν(τ)
dτ

gµν(x(τ))
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The Nambu-Goto action
After some handwaving attempts to formulate a string 
theory that would reproduce the DRM (Nielsen, Susskind, 
Nambu), a decisive step forward was made in 1970-’71 by 
Nambu and, independently, by Goto. 
They wrote a geometric action for the relativistic string in 
strict analogy with the well-known action of the relativistic 
particle (see last year’s course).
The latter can be written in a general (but given, fixed) 
spacetime metric gμν(x) and for any D as: 



ds2 = γ(τ)dτ2

γ(τ) =
dxµ(τ)

dτ

dxν(τ)
dτ

gµν(x(τ))
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The action of a point-particle is thus proportional (with mc 
as the proportionality constant) to the proper length of 
the “world-line” described by the particle’s motion and 
parametrized by xμ(τ). The classical motion is the one 

minimizing that length (a geodesic in the given metric).
We may regard the quantity:

as the induced metric on the world line, since:



γαβ ≡
∂Xµ(ξ)

∂ξα

∂Xν(ξ)
∂ξβ

Gµν(X(ξ)) , α, β = 0, 1 , ξ0 = τ, ξ1 = σ

SNG = −T

∫
d(Area) = −T

∫
d2ξ

√
−detγαβ ≡ −T

∫
dξ0

∫ π

0
dξ1

√
−detγαβ
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In complete analogy, for a relativistic string NG wrote a 
geometric action proportional to the area of the surface 
(“world-sheet” in analogy with “world-line”) swept by the 
string. T, the string tension, is the proportionality constant. 
The string’s motion is parametrized by Xμ(σ,τ) where:

μ = 0, 1, ... D-1; 0 <σ< π (by convention), τunconstrained.

NG did this in Minkowski spacetime (gμν(x) =ημν(x)) but, 
like for point particles, the construction can be easily 
generalized to an arbitrary metric Gμν(x) and for any D.

is the induced metric on the world sheet.

where

NB. Gμν(x) is not 
Einstein’s tensor!
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Again by analogy with the point-particle, the classical 
motion of the string is obtained by varying the action and 
corresponds to minimizing the area of the surface swept. 
But, unlike in the case of point-particles, the problem is 
already non trivial even in Minkowski spacetime (particularly 
at the quantum level as we shall see).

Another major difference is that for point particles we can 
add in the action different particles of different mass thus 
introducing many free parameters.
Also, interactions have to be added by hand (and it is not so 
simple!) and are quite arbitrary.
This will not be the case for the string: there will be only 
one T and interactions will be automatically included in a 
“geometric” way!



pµ(τ) ≡ δSp

δẋµ(τ)
⇒ pµ(τ)pν(τ)gµν(x(τ)) = −m2

Pµ(ξ) ≡ δSNG

δẊµ(ξ)
⇒ Pµ(ξ)X ′µ(ξ) = 0

Pµ(ξ)Pν(ξ)Gµν(X(ξ)) + T 2X ′µ(ξ)X ′ν(ξ)Gµν(X(ξ)) = 0

Ẋµ(ξ) ≡ ∂Xµ(ξ)
∂ξ0

, X ′µ(ξ) ≡ ∂Xµ(ξ)
∂ξ1
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The classical constraints
Sp is invariant under reparametrization of the world-line, 
τ->τ’(τ). This leads to 1 constraint (easy to check):

Similarly, SNG is invariant under reparametrization of the 
world-sheet by an arbitrary redefinitionξα ->ξ’α(ξα) 

This leads now to 2 constraints (easy again to check):



SNG = −T

∫
d2ξ

√
(Ẋ · X ′)2 − Ẋ2X ′2

SNG = −T

∫
d2ξ

√
−detγαβ

Ẋµ(ξ) ≡ ∂Xµ(ξ)
∂τ

, X ′µ(ξ) ≡ ∂Xµ(ξ)
∂σ
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Strings in Minkowski spacetime:
action and equations of motion

Since classical string motion (and even more quantization) 
is already non-trivial in Minkowski spacetime let us 
consider that case (also needed for connection with DRM) 
but let’s keep the dimensionality of spacetime D arbitrary. 

becomes:

γαβ ≡
∂Xµ(ξ)

∂ξα

∂Xν(ξ)
∂ξβ

Gµν(X(ξ)) , α, β = 0, 1 , ξ0 = τ, ξ1 = σ

Lorentz product 
understood



δSNG ∝
∫

dτ

∫ π

0
dσ

[(
∂

∂τ

∂L

∂Ẋµ
+

∂

∂σ

∂L

∂X ′µ

)
δXµ − ∂

∂σ

(
∂L

∂X ′µ δXµ

)]

∂

∂τ

∂L

∂Ẋµ
+

∂

∂σ

∂L

∂X ′µ = 0

∂L

∂Ẋµ
= T

ẊµX ′2 −X ′
µ(Ẋ · X ′)

√
(Ẋ · X ′)2 − Ẋ2X ′2

∂L

∂X ′µ = T
X ′

µẊ2 − Ẋµ(Ẋ · X ′)
√

(Ẋ · X ′)2 − Ẋ2X ′2
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The equations of motion for the point-particle are trivial 
while for the string they look quite frightening:



∂L

∂X ′µ = 0 , σ = 0, π

δXµ = 0 , σ = 0, π

(
∂L

∂X ′µ δXµ

)
(σ = 0) =

(
∂L

∂X ′µ δXµ

)
(σ = π) ; (no sum over µ)
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Boundary conditions
Boundary conditions are very important and they differ in a 
crucial way for open and closed strings. We need, at all τ, 

For open strings we have two options: 

For closed strings the points σ= 0 and σ= π are physically 
the same point. If spacetime is topologically trivial this 
implies Xμ(0,τ) = Xμ(π,τ) and the b.c. is satisfied.

Neumann b.c.  

Dirichlet b.c.  

For the moment we will consider N. b.c. for open strings



Ẍµ = X ′′
µ

Xµ(σ, τ) = Fµ(τ − σ) + Gµ(τ + σ)

∂L

∂Ẋµ
= TẊµ = Pµ ;

∂L

∂X ′µ = −TX ′
µ

Ẋ2 + X ′2 ≡ −(Ẋ0)2 + (Ẋi)2 − (X ′
0)

2 + (X ′
i)

2 = 0
Ẋ · X ′ = 0 , i.e. (Ẋ ± X′)2 = 0

τ ± σ → f±(τ ± σ)
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A convenient choice of coordinates
We can use WS reparametrization invariance to impose 
two useful conditions (defining the orthonormal gauges):

Also:

and the simple equation of motion:

w/ solution:

Note that the transformations

keep us in the ON gauge (residual gauge transformations).



Ẋ · X ′ = 0
Ẋ2 + X ′2 ≡ −(Ẋ0)2 + (Ẋi)2 − (X ′

0)
2 + (X ′

i)
2 = 0

Ẍµ = X ′′
µ

Xµ(σ, τ) = qµ + 2α′pµτ + i
√

2α′
∞∑

n=1

[
an,µ√

n
e−inτ −

a∗n,µ√
n

einτ

]
cos(nσ)

Xµ(σ, τ) = qµ + 2α′pµτ +
i

2
√

2α′
∞∑

n=1

[
an,µ√

n
e−2in(τ−σ) −

a∗n,µ√
n

e2in(τ−σ)

]

+
i

2
√

2α′
∞∑

n=1

[
ãn,µ√

n
e−2in(τ+σ) −

ã∗n,µ√
n

e2in(τ+σ)

]
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General solution of

Closed strings Xμ(σ=0) = Xμ(σ= π)  

Open (Neumann) strings ( X’μ(σ=0, π) =0). Def. 2πα’= 1/T 

and of b.c. 

to be added 



Ẋ · X ′ = 0
Ẋ2 + X ′2 ≡ −(Ẋ0)2 + (Ẋi)2 − (X ′

0)
2 + (X ′

i)
2 = 0

Ẍµ = X ′′
µ

X0 = Aτ ; X1 = A cosτ cosσ , X2 = A sinτ cosσ

Xi = 0 , (i = 3, 4, . . . D − 1)

X ′
µ(σ = 0, π) = 0⇒

∑

i

(
dXi

dX0

)2

(σ = 0, π) = 1
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Simplest classical solution:
open string, the rotating rod

The equations to be solved are

subject to the constraints

and to the b.c.

A simple solution  is:

e.o.m., constraints and b.c. easily checked!



X0 = Aτ ; X1 = A cosτ cosσ , X2 = A sinτ cosσ

Xi = 0 , (i = 3, 4, . . . D − 1)

r ≡
√

X2
1 + X2

2 = A|cosσ|
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A rigid, rotating rod whose ends move with the speed of 
light since dl/dX0 = r dθ/Adτ = r/A = |cosσ|.

X1

X2

σ= 0σ= π τ= 0σ= π/2

θ= τ

Let us now compute the energy (mass) and angular 
momentum of this classical string.



pi =
∫ π

0
dσPi(σ) = T

∫ π

0
dσẊi = 0

E = M =
∫ π

0
dσP0(σ) = T

∫ π

0
dσẊ0 = πTA

J =
M2

2πT
= α′M2 , α′ ≡ 1

2πT

J12 =
∫ π

0
dσ(X1P2 −X2P1)(σ)

= TA2

∫ π

0
dσ(sin2τcos2σ + cos2τcos2σ) =

π

2
TA2
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It is quite obvious that this solution maximizes the ratio 
J/M2 . The relation is very similar to the one given by the 
linear Regge trajectory we have been discussing in DRM.  

X0 = Aτ ; X1 = A cosτ cosσ , X2 = A sinτ cosσ

Xi = 0 , (i = 3, 4, . . . D − 1)

thus
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For closed strings one finds the same relation between J 
and M2  except for T --> 2 T (simple interpretation: for 
the same total length the closed string is half as big since 
it has to “come back on itself”). Hence α’ -> 1/2 α’

Yet classical strings and DRM differ in crucial way.
In the classical theory, J and M2 can take any real value 
with J<α’M2 => classical strings cannot have J without 
having mass! But in the DRM there were such states:

J

M2

J

M2

2 h
h

open
open

closed

closed

classical 
strings DRM

α’

1/2α’
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Classical vs. quantum strings
The discrepancy between strings and the DRM disappears 
completely once we move from classical to quantum strings
This is where points and strings start to differ in a 
fundamental, qualitative way.
Point particles can be quantized in an arbitrary background 
metric. This turns out not to be true for strings!
As we shall see, even Minkowski spacetime is in general 
forbidden... unless D takes a (so-called) critical value!
String quantization is not trivial and can be done in many 
different ways. Fortunately the end results are always the 
same.
Here we shall discuss the first succesful attempt to 
quantize strings based on the light-cone gauge.
In the seminar we will see more modern ways...



[Xµ(σ, τ), Pν(σ′, τ)] = iηµνδ(σ − σ′) , (! = 1)

Xµ(σ, τ) = qµ + 2α′pµτ + i
√

2α′
∞∑

n=1

[
an,µ√

n
e−inτ −

a†n,µ√
n

einτ

]
cos(nσ)

Xµ(σ, τ) = qµ + 2α′pµτ +
i

2
√

2α′
∞∑

n=1

[
an,µ√

n
e−2in(τ−σ) −

a†n,µ√
n

e2in(τ−σ)

]

+
i

2
√

2α′
∞∑

n=1

[
ãn,µ√

n
e−2in(τ+σ) −

ã†n,µ√
n

e2in(τ+σ)

]
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Quantization (open string)
In order to quantize the string we proceed as in any D=2 
QFT and promote X and P to non-commuting operators:

Using the standard h. osc. c.r. we get the desired result:

The only tricky things to take care of are the constraints!



2Ẋ−Ẋ+ =
(D−2)∑

i=1

(
Ẋ2

i + X
′2
i

)
; X

′−Ẋ+ =
(D−2)∑

i=1

ẊiX
′

i

X+(σ, τ) = 2α′p+τ ; X±(σ, τ) ≡ X0 ±XD−1

√
2

P+(σ, τ) = TẊ+(σ, τ) =
1
π

p+
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Light-cone quantization 
(Goddard, Goldstone, Rebbi & Thorn, 1973)

The residual freedom to perform conformal transformations:

τ ± σ → f±(τ ± σ)
allows us to (almost completely) fix one of the coordinates. 
For the rigid rod we took X0 = Aτ, but for the general case it 
is more useful to perform an infinite boost and fix instead:

The constraints can be solved for X- since one must have:



Ẋ− =
1

4α′p+

(D−2)∑

i=1

(
Ẋ2

i + X
′2
i

)
; X

′− =
1

2α′p+

(D−2)∑

i=1

ẊiX
′

i
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These equations allow to express the a-n oscillators in terms 
of the transverse ones (while the a+n are zero). Note that 
the a-n oscillators become bilinear in the transverse ones.
Therefore in this gauge we were able to solve the 
constraints and to reduce the physical spectrum to the one 
generated by (D-2) spacelike oscillators (Cf. DDF).
At this point it looks as if we managed to eliminate all the 
ghosts without getting any constraint on α0 or on D. 

Does it mean that the string is smarter than the DRM?
Unfortunately the answer is negative.
The problem is that the l.c. gauge breaks explicit Lorentz 
invariance: we have to check that L.I. is still there, even if 
hidden ...



i[Mµν , Mρσ] = ηµρMνσ + ηνσMµρ − ηµσMνρ − ηνρMµσ

Mµν ≡
∫

dσ (PµXν − PνXµ)

[M+i, M+j ] ∝
∞∑

n=1

[
n2

(
D − 2

24
− 1

)
−

(
D − 2

24
− α0

)] (
a†in aj

n − a†jn ai
n

)
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A Lorentz anomaly?
We have to check the O(D-1,1) Lorentz algebra:

The check is easy for the compact O(D-2) subgroup (Lij are 
bilinear in the oscillators) but becomes highly non-trivial for 
the components of the Lorentz generators involving the ± 
directions (these may involve three oscillators). In particular 
[M+i, M+j] should vanish (recall that η++ = 0) while a long but 
straightforward calculation (GGRT) gives: 

We thus find that the Lorentz algebra is broken unlessα0 =1 
and D = 26, i.e. the same conditions we found in the DRM!



Qµ(z, z̄) = Xµ(e−τE e−iσ, e−τE e+iσ)

Qµ(z) = Xµ(τ,σ = 0) with z = eiτ
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Relation to DRM formalism
What is the relation between the operator Q(z) of the DRM 
and the string position operator X(σ,τ)?

It turns out that Q(z) describes the motion of one end of the 
open string:

The relation is more direct for closed strings since in the 
DRM their treatment needs a complex z-variable and this can 
be traded for both τ(giving |z|) and σ(providing the phase 
of z):

Our real variable z corresponds to having made all calculation 
using Euclidean world-sheet time: τE = -iτ.



α′M2 + 1 = N =
D−2∑

n,i=1

nNn,i

L0 = 1⇒ α′M2 + 1 =
∑

n,µ

n a†n,µ aµ
n ⇒

D−2∑

n,i=1

n a†n,i ai
n
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• In the l.c. quantization the mass-shell condition becomes:

Counting physical states

• This is the famous “Partitio Numerorum” problem solved long 
ago by the Hardy-Ramanujan formula (for D-2 =1):

and the number of physical states w/ α‘M2= (N-1) is given by 
the number of solutions of the equation (in the integers Nn,i):



Z(β) ≡ Tr[e−βH ] ∼
∫

dM d(M)e−βM ∼
∫

dM ecM−βM
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• Although unexpected, this was just the behaviour 
postulated by R. Hagedorn a few years earlier (~1965) on a 
more phenomenological basis (e.g. a Boltzmann factor in the 
“transverse energy” of particles produced in high energy 
hadronic collisions).

• Taken at face value, such a density of states leads to a 
limiting (maximal, Hagedorn) temperature (FV, 1969) since:

diverges for β = 1/(kBT) < c. 

d(N) = N−pe2π
q

N(D−2)
6 = N−pe2π

q
α′(D−2)

6 M



TH =
1

2π
√

α′

√
6

D − 2
→ 1

4π
√

α′
if D = 26
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• Here the limiting  temperature TH is given by:

i.e. a maximal temperature of order a few hundred MeV (if 
we set D=4 and take for α’ the experimental value)!

• TH has an interesting reinterpretation in QCD as the 
deconfining temperature above which hadronic matter 
(protons, Nuclei) “melts” and makes a phase transition to 
the quark-gluon plasma phase (something that must have 
happened in the very early Universe in the opposite 
direction).

• In string theory such an interpretation is absent.


