Maladies neurodégénératives et IA: vers une approche intégrative

Marco Lorenzi

Université Côte d'Azur, Inria Sophia Antipolis Epione Research Group

William Utermolhen (1933-2007) Self-portraits

1995: diagnosis of Alzheimer's disease

Alzheimer's disease and Neurodegenerative disorders

Human and social costs

Most costly disease in Europe and USA

Long-term care Median life expectancy of 9 years [Castro et al., Dement Neuropsychol. 2010] Impact on caregivers 66-75% of average family income [Castro et al., Dement Neuropsychol. 201]

Global Health care

50 million people affected in 2018

1 trillion \$ cost worldwide in 2018

Source World Alzheimer Report 2018 (alz.co.uk)

Dynamics of neurodegeneration

Jack et al, Lancet Neurol 2010; Frisoni et al, Nature Rev Neurol 2010

15-30 years time span time

Inría

Data Science meets biomedical research

Statistical learning

- formalizes hypothesis into models
- verifies models by means of data

A discipline to answer challenging questions in medicine

Data Science meets biomedical research

- Better understanding of the pathology

How to integrate heterogenous biomedical measures?

Data Science meets biomedical research

- Early diagnosis for better cure

How to predict and interpret a pathological evolution?

Challenges

- How to integrate heterogeneous biomedical measures?
- How to integrate the temporal dimension?
- How to unveil the biological mechanisms of the pathology?

Challenges

- How to integrate heterogeneous biomedical measures?

- How to integrate the temporal dimension?

- How to unveil the biological mechanisms of the pathology?

Decoding: data reconstruction from the latent representation

Decoding: data reconstruction from the latent representation Encoding: latent representation from the data

Decoding: data reconstruction from the latent representation Encoding: latent representation from the data

Decoding: data reconstruction from the latent representation Encoding: latent representation from the data

Decoding: data reconstruction from the latent representation Encoding: latent representation from the data

Antelmi, Ayache, Robert and Lorenzi, ICML 2019

Decoding: data reconstruction from the latent representation Encoding: latent representation from the data

minimize

$$dist(q(z | X_c), p(z | X_1, X_2, ..., X_c))$$

Evidence Lower bound (ELBO)

$$\frac{1}{C} \sum_{c=1}^{C} E_{q(z|X_c)} [\sum_{i} \ln p(X_i | z)] - DKL(q(z | X_c) || p(z))$$

minimize

$$dist(q(z | X_c), p(z | X_1, X_2, ..., X_c))$$

Evidence Lower bound (ELBO)

$$\frac{1}{C} \sum_{c=1}^{C} E_{q(z|X_c)} \left[\sum_{i} \ln p(X_i | z) \right] - DKL \left(q(z | X_c) \| p(z) \right)$$

Encoding for given channel

minimize

$$dist(q(z | X_c), p(z | X_1, X_2, ..., X_c))$$

minimize I $dist(q(z | X_c), p(z | X_1, X_2, ..., X_c))$

Evidence Lower bound (ELBO)

 $\frac{1}{C} \sum_{c=1}^{C} E_{q(z|X_c)} \left[\sum_{i} \ln p(X_i | z) \right] - DKL(q(z | X_c) || p(z))$

Encoding for given channel Reconstruction of all channels

minimize I $dist(q(z | X_c), p(z | X_1, X_2, ..., X_c))$

Evidence Lower bound (ELBO)

 $\frac{1}{C} \sum_{c=1}^{C} E_{q(z|X_c)} \left[\sum_{i} \ln p(X_i | z) \right] - DKL(q(z | X_c) || p(z))$

Encoding for given channel Reconstruction of all channels Regularization: sparsity inducing prior

[Kingma et al, NIPS, 2015; Molchanov et al, ICML 2017]

Prediction from latent space

Antelmi, Ayache, Robert and Lorenzi, ICML 2019

Generation from latent space

Another illustration: multivariate Imaging-genetics

Integrating heterogeneous biomedical measures

- Latent variable models provide powerful discovery tools
- Specific properties needed: scalability, flexibility, interpretability
- Curse of dimensionality and generalization:
 Synergy between data scientists, biologists and clinicians

Challenges

- How to integrate heterogeneous biomedical measures?

- How to integrate the temporal dimension?

- How to unveil the biological mechanisms of the pathology?

Modeling the natural history of neurodegeneration

(nría_

Lorenzi, Filippone, Frisoni, Alexander & Ourselin, NeuroImage, 2017

Statistical disease progression model via monotonic Gaussian Processes (GP)

- Multivariate non-parametric random effects modeling
- Monotonic GP [Riihimäki & Vehtari, PMLR, 2010; Lorenzi & Filippone, ICML, 2018]
- Time reparameterization [Jedynak et al, NeuroImage 2012; Durrleman et al, IJCV, 2013; Schiratti et al, NIPS 2015]

Highlighting dynamics and relationship between biomarkers

Innía

Lorenzi, Filippone, Frisoni, Alexander & Ourselin, NeuroImage, 2017

In-silico model of brain pathology

Representing the full disease process

- Structure MRI

- Hypometabolism FDG PET
- Clinical status ADAS 11, MMSE, ...

In-silico model of brain pathology

Efficient formulation through stochastic variational inference:

- Random feature expansion for GP regression [Cutajar et al, ICML 2017]
- Monotonic constraint in deep GP [Lorenzi & Filippone, ICML 2018]

nnin

- Variational dropout for sparsity and model selection [Kingma et al, NIPS, 2015; Molchanov et al, ICML 2017]

In-silico model of brain pathology

MRI (atrophy)

FDG-PET (hypometabolism)

Abi Nader, Ayache, Robert and Lorenzi, under review, arXiv:1902.10952

In-silico model of brain pathology

Neurodegeneration model as reference for independent studies Geneva Memory Clinic cohort (91 individuals)

Lorenzi, Ribaldi & Frisoni. ADPD 2019

gpprogressionmodel.inria.fr

Thanks to Inria SED Team

Julia Elizabeth Luna, Thibaud Kloczko, David Rey

Challenges

- How to integrate heterogeneous biomedical measures?
- How to integrate the temporal dimension?
- How to unveil the biological mechanisms of the pathology?

Review Article Published: 04 September 2013

Self-propagation of pathogenic protein aggregates in neurodegenerative diseases

Mathias Jucker 🏁 & Lary C. Walker 🏁

Nature 501, 45–51 (05 September 2013) Download Citation 🚽

.

Neurodegeneration as prion-like disease across brain architectures

Alzheimer's (Amyloid-β)

Alzheimer's (Tau)

Parkinson's (α -Synuclein)

ALS (TDP-43)

Mechanisms still unclear!

Modeling and inference of disease dynamics?

From Jucker and Walker, Nature, 2013

Data-driven inference of propagation dynamics

Data-driven inference of propagation dynamics

Garbarino & Lorenzi, IPMI 2019

Data-driven inference of propagation dynamics

- GP for dynamical systems modeling [Lorenzi & Filippone, ICML 2018]
- Modeling AV45-PET imaging data
- Time reparameterization

1090 individuals Learned propagation dynamics 369 healthy 526 impaired X(t) 195 Alzheimer's X(t) Amyloid concentration 2.4 2 2.4 Superior Occipital 1.6 2.2 frontal 1.2 Occipital AV45 uptake 0.8 1.8 **Thalamus** 0.4 1.60 time (years) 10 0 1.4 1.2 **Propagation strength:** D(X,t)_{ii} 0.8 0.75 0.6 0.5 0.4 2.2 2.4 0.4 0.6 0.8 1.2 1.4 1.6 1.8 2 1 0.25 Superior frontal AV45 uptake

Garbarino & Lorenzi, IPMI 2019

Inría

0

Personalization

Garbarino & Lorenzi, IPMI 2019

Prediction and interpretation of pathological evolutions

- A long-term progression model can be estimated from short-term clinical data *cfr. L'imagerie médicale et apprentissage automatique: vers une intelligence artificielle?* Collège de France, 2 may 2018
- Biological/Clinical statistical constraints: improved plausibility and reliability
- Valuable quantitative tool: diagnosis and clinical trials

Data science

Bridging domains through statistical learning

Informatics, Mathematics, Biology, Medicine

Potential for great discoveries through Big Data

N. Ayache

P. Robert V. Manera

L. Antelmi C. Abi Nader

UCA-Ville de Nice Young Researcher award

S. Garbarino

UCA MDLab

M. Milanesio

Meta-ImaGen

S.S. Silva

J. Banus

M. Sermesant

Hôpitaux Universitaires

G.B. Frisoni

F. Ribaldi

M. Filippone

ILLINOIS INSTITUT OF TECHNOLOGY

Thank you!

Brain architecture: structural connectivity across anatomical areas

A proxy for protein deposition: data collections of longitudinal AV45-PET amyloid scans

- No consistent definition of time axis
- No clear model dynamics

Latent variable modeling of multivariate data

nnia

- 53

Latent variable modeling of multivariate data

Predictions in testing data

Challenges

- How to integrate heterogenous biomedical measures

- How to analyse private healthcare data collected worldwide?

- How to predict pathological evolution for a given individual?

Big Data in medicine

Single hospital: 100s – 1'000s patients

Data from many hospitals needed

Access to multiple centers data falls into General Data Protection Regulation (GDPR): Privacy, confidentiality, security, ...

Data cannot be gathered in a single centre!

Standard learning algorithms cannot be used in multicentric data

Big Data in medicine

Circumventing the problem of data access **Federated-analysis (or meta-analysis)**

Is the association significant?

- No data sharing
- Ok for standard statistical testing (p-values, effect size)
- No complex modeling possible

Federated analysis toolkit

A methodology for distributed

Allows a federated framework for several key statistical operations:

Data standardization, accounting for covariates, dimensionality reduction, ...

Federated analysis of subcortical brain regions in dementia

ADNI	PPMI	UK Biobank	Miriad
Alzheimer's	Parkinson's	Healthy	Alzheimer's
802	232	208	68

Projection on latent components

Brain subcortical components

Challenges

How to analyse private healthcare data collected worldwide?

Answer from Statistical Learning:

- Advanced statistical modeling can be compatible with Data privacy and anonymity
- Federated learning applies for simple linear models as well as for more complex ones (e.g. neural networks or Gaussian processes)
- Future research needed for improving data security, data transfer bottlenecks, modeling flexibility

Individuals biomarkers' observations

$$\mathbf{y}^{j}(t) = \left(y_{b_{1}}^{j}(t), y_{b_{2}}^{j}(t), \dots, y_{b_{N_{b}}}^{j}(t)\right)^{\mathsf{T}}$$

Individuals
biomarkers' observations
$$\mathbf{y}^{j}(t) = \left(y_{b_{1}}^{j}(t), y_{b_{2}}^{j}(t), \dots, y_{b_{N_{b}}}^{j}(t)\right)^{\top}$$
$$= \mathbf{f}(\phi^{j}(\tau))$$
Eived effect

Individuals
biomarkers' observations
$$\mathbf{y}^{j}(t) = \left(y_{b_{1}}^{j}(t), y_{b_{2}}^{j}(t), \dots, y_{b_{N_{b}}}^{j}(t)\right)^{\top}$$
$$= \mathbf{f}(\phi^{j}(\tau)) + \boldsymbol{\nu}^{j}(\phi^{j}(\tau)) + \boldsymbol{\epsilon}$$

Random effect + observational noise

Inría

Individuals biomarkers' observations

$$\mathbf{y}^{j}(t) = \left(y_{b_{1}}^{j}(t), y_{b_{2}}^{j}(t), \dots, y_{b_{N_{b}}}^{j}(t)\right)^{\mathsf{T}}$$

$$= \mathbf{f}(\phi^{j}(\tau)) + \nu^{j}(\phi^{j}(\tau)) + \epsilon$$

Subject-specific time reparameterization

Formulation through Gaussian process regression with constraint on dynamics

maia
Multivariate Imaging-genetics modeling

PLS statistical result

From 1'000'000 to 148 variants

Meta analysis on gene annotation databases

Significance (p-value)

	training	testing
TM2D1	0.005	0.053
IL10RA	0.107	0.620
TRIB3	0.003	0.003
ZBTB7A	0.036	0.913
LYSMD4	0.000	0.206
CRYL1	0.621	0.118
FAM135B	0.000	0.559

TRIB3

- neuronal cell death,
- modulation of PSEN1 stability,
- interaction with APP.

Lorenzi, Altmann, Gutman, Wray, Arber, et al; PNAS, 115 (12), 2018