
Automation in the Maintenance of the Linux Kernel
The Coccinelle Experience

Julia Lawall, Gilles Muller (Inria/LIP6)
February 6, 2019

1

What is an operating system kernel?

Contains:
• screen
• keyboard
• camera
• CPU
• disk
• etc.

The OS kernel is the software that manages
application access to hardware

2

What is an operating system kernel?

Contains:
• screen
• keyboard
• camera
• CPU
• disk
• etc.

The OS kernel is the software that manages
application access to hardware

2

What is an operating system kernel?

Application

OS kernel

Hardware

Contains:
• screen
• keyboard
• camera
• CPU
• disk
• etc.

The OS kernel is the software that manages
application access to hardware

3

Operating system correctness is critical

• Our “modern” society (almost) entirely relies on computers

• Applications are directly impacted by any bug in the operating system
– Application unavailability
– Loss of data
– Security attacks
– Risks for human life
– Impossible to predict the next exploit

4

Our focus: The Linux kernel

• Open source OS kernel, developed by Linus Torvalds

• First released in 1991

• Version 1.0.0 released in 1994

• Today used in the top 500 supercomputers,
billions of smartphones (Android),
battleships,
stock exchanges, …

5

Development challenges

• Large code size
– 17.5 million lines of code in Linux v4.20 (Dec 2018)

• Multiple streams of development
– Mainline version, accepting new features and bug fixes.
– Stable versions, accepting only bug fixes from the mainline.

• Wide range of contributors
– Almost 20 000 contributors since 2005.
– Industry developers, hobbyists, newbies.

• High rate of change and heavy code review burden
– 13-14K commits (changes) per release (every 2-3 months).
– Need to be integrated with both mainline and stable versions.

6

Code size

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

0

5,000,000

10,000,000

Li
ne
s
of
co
de

drivers arch fs net kernel mm

7

Release model

4.9.x 4.12.x

4.11.x

4.10.x

v4.9 release

v4.11 merge window

v4.12 release candidates

Mainline

Stables
Long term

A new mainline release every 2-3 months.
13-14K commits (changes) per release

8

Maintainer hierarchy (tiny extract)

Linus Torvalds

David Miller (net drivers) Daniel Vetter (gpu/drm)

Andy Gospodarek Tariq Toukan

drivers/net/ethernet/
tehuti/tehuti.c

drivers/net/ethernet/
mellanox/mlx4/cq.c

Heiko Stübner Alex Deucher

drivers/gpu/drm/
rockchip/rockchip_rgb.c

drivers/gpu/drm/
radeon/r100.c

1287 maintainers in v4.20 (Dec 2018), each responsible for 1-8000 files.
9

Collaborative development

Largest contributors: ≥ 10 developers and ≥ 500 commits per year.

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

microchip
bootlin
cavium

free-electrons
rock-chips
renesas
imgtec

codeaurora
pengutronix

arm
amd

freescale
qualcomm

linaro
atheros
samsung
kernel

infradead
redhat
gmail
suse
ibm

netronome
canonical
fb
chromium
nxp
mellanox
atmel
iki
cisco
huawei
nvidia
google
gmx
ti
broadcom
nokia
fujitsu
oracle
sgi
intel
linux

10

Contribution workflow

All contributions go through email

Developer Maintainers
and lists

Subsystem
git

Linus Torvalds

Mainline
git

Greg Kroah-Hartman

Stable
git

1. email

3. ack

2. discuss

3. commit

4. email

6. commit5. pull 7. pull 8. commit

11

Emailed patch, fixing a bug in a drm driver
From nobody Sun Jan 13 09:05:41 CET 2019
From: Julia Lawall <Julia.Lawall@lip6.fr>
To: Sandy Huang <hjc@rock-chips.com>
Cc: "Heiko Stübner" <heiko@sntech.de>,David Airlie <airlied@linux.ie>,Daniel Vetter <daniel@ffwll.ch>,

dri-devel@lists.freedesktop.org,linux-arm-kernel@lists.infradead.org,linux-rockchip@lists.infradead.org,
linux-kernel@vger.kernel.org

Subject: [PATCH 3/4] drm/rockchip: add missing of_node_put

The device node iterators perform an of_node_get on each iteration, so a
jump out of the loop requires an of_node_put.
...

Signed-off-by: Julia Lawall <Julia.Lawall@lip6.fr>

drivers/gpu/drm/rockchip/rockchip_rgb.c | 4 +++-
1 file changed, 3 insertions(+), 1 deletion(-)

diff --git a/drivers/gpu/drm/rockchip/rockchip_rgb.c b/drivers/gpu/drm/rockchip/rockchip_rgb.c
index 96ac145..37f9302 100644
--- a/drivers/gpu/drm/rockchip/rockchip_rgb.c
+++ b/drivers/gpu/drm/rockchip/rockchip_rgb.c
@@ -116,2 +116,4 @@ struct rockchip_rgb *rockchip_rgb_init(struct device *dev,
- if (!ret)
+ if (!ret) {
+ of_node_put(endpoint);

break;
+ }

12

Problem: Big code implies the need for big changes

Thomas Gleixner (maintainer of x86 architecture support, interrupt support, etc.):
Remove the irq argument from interrupt handlers.

• 188 affected files.

Kees Cook (organizer of the Linux kernel self-protection project):
Replace malloc-based array allocations by safer versions.

• 377 and 484 affected files.

Deepa Dinamani (developer), and many others: Time data size for Y2038.

• ∼ 250 affected files.

Julia Lawall: Add missing of_node_put.

• 50 affected files. 13

Some patches fixing missing of_node_puts

drivers/video/backlight/88pm860x_bl.c
@@ -180,4 +180,5 @@

data->iset = PM8606_WLED_CURRENT(iset);
of_property_read_u32(np, "marvell,88pm860x-pwm",

&data->pwm);
+ of_node_put(np);

break;

drivers/power/charger-manager.c
@@ -1581,8 +1581,10 @@

cables = devm_kzalloc(dev, sizeof(*cables)
* chg_regs->num_cables,
GFP_KERNEL);

- if (!cables)
+ if (!cables) {
+ of_node_put(child);

return ERR_PTR(-ENOMEM);
+ }

arch/arm/kernel/devtree.c
@@ -101,6 +101,7 @@
if (of_property_read_u32(cpu, "reg", &hwid)) {

pr_debug(" * %s missing reg property\n",
cpu->full_name);

+ of_node_put(cpu);
return;

}

@@ -108,8 +109,10 @@
* 8 MSBs must be set to 0 in the DT since the reg property
* defines the MPIDR[23:0].
*/

- if (hwid & ~MPIDR_HWID_BITMASK)
+ if (hwid & ~MPIDR_HWID_BITMASK) {
+ of_node_put(cpu);

return;
+ }

/*
* Duplicate MPIDRs are a recipe for disaster.

How to make all these changes quickly, consistently and correctly?

14

Some patches fixing missing of_node_puts

drivers/video/backlight/88pm860x_bl.c
@@ -180,4 +180,5 @@

data->iset = PM8606_WLED_CURRENT(iset);
of_property_read_u32(np, "marvell,88pm860x-pwm",

&data->pwm);
+ of_node_put(np);

break;

drivers/power/charger-manager.c
@@ -1581,8 +1581,10 @@

cables = devm_kzalloc(dev, sizeof(*cables)
* chg_regs->num_cables,
GFP_KERNEL);

- if (!cables)
+ if (!cables) {
+ of_node_put(child);

return ERR_PTR(-ENOMEM);
+ }

arch/arm/kernel/devtree.c
@@ -101,6 +101,7 @@
if (of_property_read_u32(cpu, "reg", &hwid)) {

pr_debug(" * %s missing reg property\n",
cpu->full_name);

+ of_node_put(cpu);
return;

}

@@ -108,8 +109,10 @@
* 8 MSBs must be set to 0 in the DT since the reg property
* defines the MPIDR[23:0].
*/

- if (hwid & ~MPIDR_HWID_BITMASK)
+ if (hwid & ~MPIDR_HWID_BITMASK) {
+ of_node_put(cpu);

return;
+ }

/*
* Duplicate MPIDRs are a recipe for disaster.

Challenge: How to make all these changes quickly, consistently and correctly?
15

Coccinelle to the rescue!

• Allows changes to C code to be expressed using patch-like code patterns
(semantic patches) using the language SmPL.

• Applies SmPL semantic patches to an entire code base, updating all relevant
code sites at once.

• Under development since 2005. Open source since 2008.

Example: Find and fix missing of_node_put bugs

16

Semantic patches

• Like patches, but independent of irrelevant details
(line numbers, spacing, variable names, etc.)

• Derived from code, with abstraction.

• Easily adaptable, to eliminate false positives or treat new cases.

• Goal: fit with the existing habits of the Linux programmer.

No program analysis expertise required.

17

Semantic patches

• Like patches, but independent of irrelevant details
(line numbers, spacing, variable names, etc.)

• Derived from code, with abstraction.

• Easily adaptable, to eliminate false positives or treat new cases.

• Goal: fit with the existing habits of the Linux programmer.

No program analysis expertise required.

17

Example: Find and fix missing of_node_put bugs

Memory management in kernel code.

• kmalloc to allocate memory.

• kfree later, to free it.

• Requires knowing when a free is possible, i.e., no remaining pointers.

Some parts of the kernel provide more support.

• Reference counting for device nodes.

• of_node_get on access.

• of_node_put to allow freeing.

18

Example: Find and fix missing of_node_put bugs

Memory management in kernel code.

• kmalloc to allocate memory.

• kfree later, to free it.

• Requires knowing when a free is possible, i.e., no remaining pointers.

Some parts of the kernel provide more support.

• Reference counting for device nodes.

• of_node_get on access.

• of_node_put to allow freeing.

18

Code clutter

of_node_get’s and of_node_put’s clutter the code.

• Bookkeeping, not functionality.

Solution? Hide them when possible.
for_each_child_of_node(overlay, child)

adjust_overlay_phandles(child, phandle_delta);

Each iteration increases the reference count of a new element, and decreases the
reference count of the previous element.

19

Code clutter

of_node_get’s and of_node_put’s clutter the code.

• Bookkeeping, not functionality.

Solution? Hide them when possible.
for_each_child_of_node(overlay, child)

adjust_overlay_phandles(child, phandle_delta);

Each iteration increases the reference count of a new element, and decreases the
reference count of the previous element.

20

Problem: What is hidden is easily forgotten

for_each_child_of_node hides reference counts in the normal case.

• Problem: Abnormal loop exits don’t benefit from the hidden puts:
– break, return, goto
– Not continue

• Consequence: memory leak.

21

Evolution of the problem over time

2011 20182016

v3
.0

v3
.5

v3
.10

v3
.15

v4
.0

v4
.5

v4
.10

v4
.15

v4
.20

0

100

200

#
of
lo
op

ex
its

all exits missing put

There are currently 9 such iterators

• for_each_of_cpu_node added in August 2018. 22

An example to motivate semantic patch construction

for_each_child_of_node(port, endpoint) {
if (of_property_read_u32(endpoint, "reg", &endpoint_id))

endpoint_id = 0;
if (rockchip_drm_endpoint_is_subdriver(endpoint) > 0)

continue;
child_count++;
ret = drm_of_find_panel_or_bridge(dev->of_node, 0, endpoint_id,

&panel, &bridge);
- if (!ret)
+ if (!ret) {
+ of_node_put(endpoint);

break;
+ }
}

23

Constructing the of_node_put semantic patch

Check execution paths through and after the loop body.

and after the loop body in the case of break.

@@
expression node,child;
iterator name for_each_child_of_node;
@@
for_each_child_of_node(node, child) {
...

}
...

24

Constructing the of_node_put semantic patch

All ok if reach an of_node_put or add a pointer to child.
break requires further attention.
@@
expression node,child,e;
iterator name for_each_child_of_node;
@@
for_each_child_of_node(node, child) {
...

(
of_node_put(child);

|
e = child

|
break;

)
...

}
... 25

Constructing the of_node_put semantic patch

Add of_node_put before break;.

Add of_node_put before break;.

@@
expression node,child,e;
iterator name for_each_child_of_node;
@@
for_each_child_of_node(node, child) {
...

(
of_node_put(child);

|
e = child

|
+ of_node_put(child);
break;

)
...

}
...

26

Constructing the of_node_put semantic patch

Make break optional.

Make break; optional

@@
expression node,child,e;
iterator name for_each_child_of_node;
@@
for_each_child_of_node(node, child) {
...

(
of_node_put(child);

|
e = child

|
+ of_node_put(child);
? break;
)
...

}
...

27

Constructing the of_node_put semantic patch

Allow any code to follow the matched code in the loop.
By default, the code matched by a pattern adjacent to … cannot be matched in …
@@
expression node,child,e;
iterator name for_each_child_of_node;
@@
for_each_child_of_node(node, child) {
...

(
of_node_put(child);

|
e = child

|
+ of_node_put(child);
? break;
)
... when any

}
...

28

Constructing the of_node_put semantic patch

Check that child is not used after the loop.

Check that child is not used after the loop.

@@
expression node,child,e;
iterator name for_each_child_of_node;
@@
for_each_child_of_node(node, child) {
...

(
of_node_put(child);

|
e = child

|
+ of_node_put(child);
? break;
)
... when any

}
... when != child

29

Results: Identified missing of_node_puts in Linux 4.20 (Dec 2018)

break return goto
for_each_child_of_node 4 71 20

for_each_node_by_name 1 1 0
for_each_node_by_type 1 1 0
for_each_compatible_node 2 7 0
for_each_matching_node 2 3 1
for_each_matching_node_and_match 1 8 1
for_each_available_child_of_node 19 23 18
for_each_node_with_property 0 0 0
for_each_of_cpu_node 0 0 0

Studying these results reveals other types of reference count problems
for which we can write semantic patches.

30

Results: Identified missing of_node_puts in Linux 4.20 (Dec 2018)

break return goto
for_each_child_of_node 4 71 20
for_each_node_by_name 1 1 0
for_each_node_by_type 1 1 0
for_each_compatible_node 2 7 0
for_each_matching_node 2 3 1
for_each_matching_node_and_match 1 8 1
for_each_available_child_of_node 19 23 18
for_each_node_with_property 0 0 0
for_each_of_cpu_node 0 0 0

Studying these results reveals other types of reference count problems
for which we can write semantic patches.

30

Results: Identified missing of_node_puts in Linux 4.20 (Dec 2018)

break return goto
for_each_child_of_node 4 71 20
for_each_node_by_name 1 1 0
for_each_node_by_type 1 1 0
for_each_compatible_node 2 7 0
for_each_matching_node 2 3 1
for_each_matching_node_and_match 1 8 1
for_each_available_child_of_node 19 23 18
for_each_node_with_property 0 0 0
for_each_of_cpu_node 0 0 0

Studying these results reveals other types of reference count problems
for which we can write semantic patches.

30

Impact: Coccinelle-related Linux kernel commits per year

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

0

500

1,000

Nu
m
be
ro
fc
om

m
its

All Coccinelle commits Julia Lawall’s commits

31

Impact: Intel’s 0-day test service

2013 2014 2015 2016 2017
0

200

400

#
wi
th
pa
tc
he
s

api free iterators locks null tests misc

2013 2014 2015 2016 2017
0

100

200

#
wi
th
m
es
sa
ge
on
ly

32

Scaling up to Linux development

• How to write semantic patches?

• How to validate the results?

• How to submit the resulting patches?

• Scaling to multiple development streams.

33

How to write semantic patches?

Kernel developers are C programmers, not SmPL programmers.

• Some use Coccinelle regularly, and become experts
– Thomas Gleixner, Kees Cook, etc.

• Others make widespread changes infrequently.
– Learn/relearn SmPL on their own.
– Ask us to solve the problem (of_node_put).
– Ask another developer to solve the problem.
– Make the change without Coccinelle, and make a note to do better next time.

Spinfer: Infer a semantic patch from a few change examples (in progress).

34

How to write semantic patches?

Kernel developers are C programmers, not SmPL programmers.

• Some use Coccinelle regularly, and become experts
– Thomas Gleixner, Kees Cook, etc.

• Others make widespread changes infrequently.
– Learn/relearn SmPL on their own.
– Ask us to solve the problem (of_node_put).
– Ask another developer to solve the problem.
– Make the change without Coccinelle, and make a note to do better next time.

Spinfer: Infer a semantic patch from a few change examples (in progress).

34

How to validate changes?

Coccinelle makes it easy to make lots of changes, very fast.

• Changes needed validation, whether or not generated using Coccinelle.
• Testing is hard, may need unavailable hardware, specific inputs.
• Even compilation is hard, due to configuration options.

35

How to validate changes?

make coccicheck

• Make target in the Linux kernel, currently running around 60
bug-finding/fixing semantic patches.

0-Day, from Intel: compilation for many configurations and build testing.

• Runs a selection of Coccinelle scripts, via make coccicheck.
• Almost 600 0-day reports motivated by Coccinelle rules in 2017.

JMake: Make for kernel janitors [DSN 2017].

• Chooses a relevant configuration and reports whether changed code was
subjected to the compiler.

36

How to validate changes?

make coccicheck

• Make target in the Linux kernel, currently running around 60
bug-finding/fixing semantic patches.

0-Day, from Intel: compilation for many configurations and build testing.

• Runs a selection of Coccinelle scripts, via make coccicheck.
• Almost 600 0-day reports motivated by Coccinelle rules in 2017.

JMake: Make for kernel janitors [DSN 2017].

• Chooses a relevant configuration and reports whether changed code was
subjected to the compiler.

36

How to validate changes?

make coccicheck

• Make target in the Linux kernel, currently running around 60
bug-finding/fixing semantic patches.

0-Day, from Intel: compilation for many configurations and build testing.

• Runs a selection of Coccinelle scripts, via make coccicheck.
• Almost 600 0-day reports motivated by Coccinelle rules in 2017.

JMake: Make for kernel janitors [DSN 2017].

• Chooses a relevant configuration and reports whether changed code was
subjected to the compiler.

36

How to submit changes?

Coccinelle makes it easy to make lots of changes, very fast.

• Changes need to go to the right person in the maintainer hierarchy.

Linus Torvalds

David Miller (net drivers) Daniel Vetter (gpu/drm)

Andy Gospodarek Tariq Toukan

drivers/net/ethernet/
tehuti/tehuti.c

drivers/net/ethernet/
mellanox/mlx4/cq.c

Heiko Stübner Alex Deucher

drivers/gpu/drm/
rockchip/rockchip_rgb.c

drivers/gpu/drm/
radeon/r100.c

37

How to submit changes?

get_maintainer.pl: Given a patch, returns the list of relevant maintainers.

– Introduced by Joe Perches in 2009.

splitpatch: Tool bundled with Coccinelle to split a diff by maintainer and then
construct appropriate email messages.

Coccinelle has been suggested as a solution to synchronize treewide changes
with the current kernel version.

38

How to submit changes?

get_maintainer.pl: Given a patch, returns the list of relevant maintainers.

– Introduced by Joe Perches in 2009.

splitpatch: Tool bundled with Coccinelle to split a diff by maintainer and then
construct appropriate email messages.

Coccinelle has been suggested as a solution to synchronize treewide changes
with the current kernel version.

38

How to submit changes?

get_maintainer.pl: Given a patch, returns the list of relevant maintainers.

– Introduced by Joe Perches in 2009.

splitpatch: Tool bundled with Coccinelle to split a diff by maintainer and then
construct appropriate email messages.

Coccinelle has been suggested as a solution to synchronize treewide changes
with the current kernel version.

38

Challenge: Scaling to multiple development streams

4.9.x 4.12.x

4.11.x

4.10.x

Mainline

Stables
Long term

• Backports project uses Coccinelle to
retarget version specific code to a
version generic library
[EDCC 2015]

• Prequel finds commits that illustrate
how to port drivers across versions
[USENIX ATC 2017]

• Spinfer infers semantic patches from
such examples

39

Conclusion

• Coccinelle, provides user scriptable matching and transformation of C code.

• Lessons learned:
– Take the expertise of the target users into account.
– Avoid creeping featurism: Do one thing and do it well.

• Success measures:
– Over 6600 commits in the Linux kernel based on Coccinelle.
– EuroSys test of time award (2018).

• Probably, everyone in this room uses some Coccinelle modified code!

http://coccinelle.lip6.fr

40

Conclusion

• Coccinelle, provides user scriptable matching and transformation of C code.

• Lessons learned:
– Take the expertise of the target users into account.
– Avoid creeping featurism: Do one thing and do it well.

• Success measures:
– Over 6600 commits in the Linux kernel based on Coccinelle.
– EuroSys test of time award (2018).

• Probably, everyone in this room uses some Coccinelle modified code!

http://coccinelle.lip6.fr

40

Conclusion

• Coccinelle, provides user scriptable matching and transformation of C code.

• Lessons learned:
– Take the expertise of the target users into account.
– Avoid creeping featurism: Do one thing and do it well.

• Success measures:
– Over 6600 commits in the Linux kernel based on Coccinelle.
– EuroSys test of time award (2018).

• Probably, everyone in this room uses some Coccinelle modified code!

http://coccinelle.lip6.fr
40

