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What is an operating system kernel?

Contains:
• screen
• keyboard
• camera
• CPU
• disk
• etc.

The OS kernel is the software that manages
application access to hardware
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Operating system correctness is critical

• Our “modern” society (almost) entirely relies on computers

• Applications are directly impacted by any bug in the operating system
– Application unavailability
– Loss of data
– Security attacks
– Risks for human life
– Impossible to predict the next exploit
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Our focus: The Linux kernel

• Open source OS kernel, developed by Linus Torvalds

• First released in 1991

• Version 1.0.0 released in 1994

• Today used in the top 500 supercomputers,
billions of smartphones (Android),
battleships,
stock exchanges, …
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Development challenges

• Large code size
– 17.5 million lines of code in Linux v4.20 (Dec 2018)

• Multiple streams of development
– Mainline version, accepting new features and bug fixes.
– Stable versions, accepting only bug fixes from the mainline.

• Wide range of contributors
– Almost 20 000 contributors since 2005.
– Industry developers, hobbyists, newbies.

• High rate of change and heavy code review burden
– 13-14K commits (changes) per release (every 2-3 months).
– Need to be integrated with both mainline and stable versions.
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Code size
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Release model

4.9.x 4.12.x

4.11.x

4.10.x

v4.9 release

v4.11 merge window

v4.12 release candidates

Mainline

Stables
Long term

A new mainline release every 2-3 months.
13-14K commits (changes) per release
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Maintainer hierarchy (tiny extract)

Linus Torvalds

David Miller (net drivers) Daniel Vetter (gpu/drm)

Andy Gospodarek Tariq Toukan

drivers/net/ethernet/
tehuti/tehuti.c

drivers/net/ethernet/
mellanox/mlx4/cq.c

Heiko Stübner Alex Deucher

drivers/gpu/drm/
rockchip/rockchip_rgb.c

drivers/gpu/drm/
radeon/r100.c

1287 maintainers in v4.20 (Dec 2018), each responsible for 1-8000 files.
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Collaborative development

Largest contributors: ≥ 10 developers and ≥ 500 commits per year.
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kernel

infradead
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gmail
suse
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fb
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nxp
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atmel
iki
cisco
huawei
nvidia
google
gmx
ti
broadcom
nokia
fujitsu
oracle
sgi
intel
linux
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Contribution workflow

All contributions go through email

Developer Maintainers
and lists

Subsystem
git

Linus Torvalds

Mainline
git

Greg Kroah-Hartman

Stable
git

1. email

3. ack

2. discuss

3. commit

4. email

6. commit5. pull 7. pull 8. commit
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Emailed patch, fixing a bug in a drm driver
From nobody Sun Jan 13 09:05:41 CET 2019
From: Julia Lawall <Julia.Lawall@lip6.fr>
To: Sandy Huang <hjc@rock-chips.com>
Cc: "Heiko Stübner" <heiko@sntech.de>,David Airlie <airlied@linux.ie>,Daniel Vetter <daniel@ffwll.ch>,

dri-devel@lists.freedesktop.org,linux-arm-kernel@lists.infradead.org,linux-rockchip@lists.infradead.org,
linux-kernel@vger.kernel.org

Subject: [PATCH 3/4] drm/rockchip: add missing of_node_put

The device node iterators perform an of_node_get on each iteration, so a
jump out of the loop requires an of_node_put.
...

Signed-off-by: Julia Lawall <Julia.Lawall@lip6.fr>
---
drivers/gpu/drm/rockchip/rockchip_rgb.c | 4 +++-
1 file changed, 3 insertions(+), 1 deletion(-)

diff --git a/drivers/gpu/drm/rockchip/rockchip_rgb.c b/drivers/gpu/drm/rockchip/rockchip_rgb.c
index 96ac145..37f9302 100644
--- a/drivers/gpu/drm/rockchip/rockchip_rgb.c
+++ b/drivers/gpu/drm/rockchip/rockchip_rgb.c
@@ -116,2 +116,4 @@ struct rockchip_rgb *rockchip_rgb_init(struct device *dev,
- if (!ret)
+ if (!ret) {
+ of_node_put(endpoint);

break;
+ }
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Problem: Big code implies the need for big changes

Thomas Gleixner (maintainer of x86 architecture support, interrupt support, etc.):
Remove the irq argument from interrupt handlers.

• 188 affected files.

Kees Cook (organizer of the Linux kernel self-protection project):
Replace malloc-based array allocations by safer versions.

• 377 and 484 affected files.

Deepa Dinamani (developer), and many others: Time data size for Y2038.

• ∼ 250 affected files.

Julia Lawall: Add missing of_node_put.

• 50 affected files. 13



Some patches fixing missing of_node_puts

drivers/video/backlight/88pm860x_bl.c
@@ -180,4 +180,5 @@

data->iset = PM8606_WLED_CURRENT(iset);
of_property_read_u32(np, "marvell,88pm860x-pwm",

&data->pwm);
+ of_node_put(np);

break;

drivers/power/charger-manager.c
@@ -1581,8 +1581,10 @@

cables = devm_kzalloc(dev, sizeof(*cables)
* chg_regs->num_cables,
GFP_KERNEL);

- if (!cables)
+ if (!cables) {
+ of_node_put(child);

return ERR_PTR(-ENOMEM);
+ }

arch/arm/kernel/devtree.c
@@ -101,6 +101,7 @@
if (of_property_read_u32(cpu, "reg", &hwid)) {

pr_debug(" * %s missing reg property\n",
cpu->full_name);

+ of_node_put(cpu);
return;

}

@@ -108,8 +109,10 @@
* 8 MSBs must be set to 0 in the DT since the reg property
* defines the MPIDR[23:0].
*/

- if (hwid & ~MPIDR_HWID_BITMASK)
+ if (hwid & ~MPIDR_HWID_BITMASK) {
+ of_node_put(cpu);

return;
+ }

/*
* Duplicate MPIDRs are a recipe for disaster.

How to make all these changes quickly, consistently and correctly?
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Coccinelle to the rescue!

• Allows changes to C code to be expressed using patch-like code patterns
(semantic patches) using the language SmPL.

• Applies SmPL semantic patches to an entire code base, updating all relevant
code sites at once.

• Under development since 2005. Open source since 2008.

Example: Find and fix missing of_node_put bugs

16



Semantic patches

• Like patches, but independent of irrelevant details
(line numbers, spacing, variable names, etc.)

• Derived from code, with abstraction.

• Easily adaptable, to eliminate false positives or treat new cases.

• Goal: fit with the existing habits of the Linux programmer.

No program analysis expertise required.
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Example: Find and fix missing of_node_put bugs

Memory management in kernel code.

• kmalloc to allocate memory.

• kfree later, to free it.

• Requires knowing when a free is possible, i.e., no remaining pointers.

Some parts of the kernel provide more support.

• Reference counting for device nodes.

• of_node_get on access.

• of_node_put to allow freeing.
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Code clutter

of_node_get’s and of_node_put’s clutter the code.

• Bookkeeping, not functionality.

Solution? Hide them when possible.
for_each_child_of_node(overlay, child)

adjust_overlay_phandles(child, phandle_delta);

Each iteration increases the reference count of a new element, and decreases the
reference count of the previous element.
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Problem: What is hidden is easily forgotten

for_each_child_of_node hides reference counts in the normal case.

• Problem: Abnormal loop exits don’t benefit from the hidden puts:
– break, return, goto
– Not continue

• Consequence: memory leak.

21



Evolution of the problem over time
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There are currently 9 such iterators

• for_each_of_cpu_node added in August 2018. 22



An example to motivate semantic patch construction

for_each_child_of_node(port, endpoint) {
if (of_property_read_u32(endpoint, "reg", &endpoint_id))

endpoint_id = 0;
if (rockchip_drm_endpoint_is_subdriver(endpoint) > 0)

continue;
child_count++;
ret = drm_of_find_panel_or_bridge(dev->of_node, 0, endpoint_id,

&panel, &bridge);
- if (!ret)
+ if (!ret) {
+ of_node_put(endpoint);

break;
+ }
}
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Constructing the of_node_put semantic patch

Check execution paths through and after the loop body.

and after the loop body in the case of break.

@@
expression node,child;
iterator name for_each_child_of_node;
@@
for_each_child_of_node(node, child) {
...

}
...
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Constructing the of_node_put semantic patch

All ok if reach an of_node_put or add a pointer to child.
break requires further attention.
@@
expression node,child,e;
iterator name for_each_child_of_node;
@@
for_each_child_of_node(node, child) {
...

(
of_node_put(child);

|
e = child

|
break;

)
...

}
... 25



Constructing the of_node_put semantic patch

Add of_node_put before break;.

Add of_node_put before break;.

@@
expression node,child,e;
iterator name for_each_child_of_node;
@@
for_each_child_of_node(node, child) {
...

(
of_node_put(child);

|
e = child

|
+ of_node_put(child);
break;

)
...

}
...
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Constructing the of_node_put semantic patch

Make break optional.

Make break; optional

@@
expression node,child,e;
iterator name for_each_child_of_node;
@@
for_each_child_of_node(node, child) {
...

(
of_node_put(child);

|
e = child

|
+ of_node_put(child);
? break;
)
...

}
...
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Constructing the of_node_put semantic patch

Allow any code to follow the matched code in the loop.
By default, the code matched by a pattern adjacent to … cannot be matched in …
@@
expression node,child,e;
iterator name for_each_child_of_node;
@@
for_each_child_of_node(node, child) {
...

(
of_node_put(child);

|
e = child

|
+ of_node_put(child);
? break;
)
... when any

}
...

28



Constructing the of_node_put semantic patch

Check that child is not used after the loop.

Check that child is not used after the loop.

@@
expression node,child,e;
iterator name for_each_child_of_node;
@@
for_each_child_of_node(node, child) {
...

(
of_node_put(child);

|
e = child

|
+ of_node_put(child);
? break;
)
... when any

}
... when != child
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Results: Identified missing of_node_puts in Linux 4.20 (Dec 2018)

break return goto
for_each_child_of_node 4 71 20

for_each_node_by_name 1 1 0
for_each_node_by_type 1 1 0
for_each_compatible_node 2 7 0
for_each_matching_node 2 3 1
for_each_matching_node_and_match 1 8 1
for_each_available_child_of_node 19 23 18
for_each_node_with_property 0 0 0
for_each_of_cpu_node 0 0 0

Studying these results reveals other types of reference count problems
for which we can write semantic patches.
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Impact: Coccinelle-related Linux kernel commits per year
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Impact: Intel’s 0-day test service
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Scaling up to Linux development

• How to write semantic patches?

• How to validate the results?

• How to submit the resulting patches?

• Scaling to multiple development streams.
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How to write semantic patches?

Kernel developers are C programmers, not SmPL programmers.

• Some use Coccinelle regularly, and become experts
– Thomas Gleixner, Kees Cook, etc.

• Others make widespread changes infrequently.
– Learn/relearn SmPL on their own.
– Ask us to solve the problem (of_node_put).
– Ask another developer to solve the problem.
– Make the change without Coccinelle, and make a note to do better next time.

Spinfer: Infer a semantic patch from a few change examples (in progress).
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How to validate changes?

Coccinelle makes it easy to make lots of changes, very fast.

• Changes needed validation, whether or not generated using Coccinelle.
• Testing is hard, may need unavailable hardware, specific inputs.
• Even compilation is hard, due to configuration options.
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How to validate changes?

make coccicheck

• Make target in the Linux kernel, currently running around 60
bug-finding/fixing semantic patches.

0-Day, from Intel: compilation for many configurations and build testing.

• Runs a selection of Coccinelle scripts, via make coccicheck.
• Almost 600 0-day reports motivated by Coccinelle rules in 2017.

JMake: Make for kernel janitors [DSN 2017].

• Chooses a relevant configuration and reports whether changed code was
subjected to the compiler.
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How to submit changes?

Coccinelle makes it easy to make lots of changes, very fast.

• Changes need to go to the right person in the maintainer hierarchy.

Linus Torvalds

David Miller (net drivers) Daniel Vetter (gpu/drm)

Andy Gospodarek Tariq Toukan

drivers/net/ethernet/
tehuti/tehuti.c

drivers/net/ethernet/
mellanox/mlx4/cq.c

Heiko Stübner Alex Deucher

drivers/gpu/drm/
rockchip/rockchip_rgb.c

drivers/gpu/drm/
radeon/r100.c
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How to submit changes?

get_maintainer.pl: Given a patch, returns the list of relevant maintainers.

– Introduced by Joe Perches in 2009.

splitpatch: Tool bundled with Coccinelle to split a diff by maintainer and then
construct appropriate email messages.

Coccinelle has been suggested as a solution to synchronize treewide changes
with the current kernel version.
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Challenge: Scaling to multiple development streams

4.9.x 4.12.x

4.11.x

4.10.x

Mainline

Stables
Long term

• Backports project uses Coccinelle to
retarget version specific code to a
version generic library
[EDCC 2015]

• Prequel finds commits that illustrate
how to port drivers across versions
[USENIX ATC 2017]

• Spinfer infers semantic patches from
such examples
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Conclusion

• Coccinelle, provides user scriptable matching and transformation of C code.

• Lessons learned:
– Take the expertise of the target users into account.
– Avoid creeping featurism: Do one thing and do it well.

• Success measures:
– Over 6600 commits in the Linux kernel based on Coccinelle.
– EuroSys test of time award (2018).

• Probably, everyone in this room uses some Coccinelle modified code!

http://coccinelle.lip6.fr
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