
|  PAGE 1

Philippe Ciuciu

Philippe.ciuciu@cea.fr

23 avril 2019

Collège de France, Paris

Apprentissage profond pour la

reconstruction d’images IRM

acquises sous forme comprimée

L'imagerie médicale à l'heure de l'IA :

défis et opportunités

mailto:Philippe.ciuciu@cea.fr


4/22/19 |  PAGE 2

Sampling in MRI

iDFT

K-space
Spatial frequency

Perfect reconstruction of an object would require measurement of all locations in
k-space (infinite!)

Data is acquired point-by-point in k-space (sampling) along curves parametrized
by time.
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2D T2*w axial 
whole-brain

120x120x600 µm3

NEX=2

How can we 
speed up the 
acquisition?

Stucht D, et al. PLoS ONE 2015; 10: e0133921

TA = 50 minutes !

Long acquisition time
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Under-sampling in MRI

iDFT

K-space
Spatial frequency

Low frequencies = Contrast

iDFT

K-space
Spatial frequency

High frequencies = boundaries/edges
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iDFT

Nyquist-Shannon theory

↑ resolution Þ ↑ #samples  

Long acquisition times
Harry Nyquist

 The sampling frequency 
should be at least twice 
the highest frequency 
contained in the signal

 

 

 

 

 

K-space

Under-sampling in MRI
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Accelerated MRI using Parallel Imaging
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Outline

Part I: Compressed Sensing in MRI
• Standard CS acquisition
• Standard CS reconstruction
• SPARKLING

Part II: Deep learning for MR Image reconstruction
• Motivations
• A recent breakthrough
• From single to double-domain denoising
• Where to contribute?
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Subsampling with guarantees of image recovery
if these two criteria are fulfilled :

i. Variable-density sampling

ii. Locally uniform coverage

Nonlinear
reconstructions

K-space

Compressed Sensing in MRI
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 Sampling in MRI:

● Segmented acquisition: 
Scan time proportional to number of shots

● Hardware constraints on gradients:
Gmax < 40 mT/m ; Smax < 200 T/m/s
➔ bounded velocity and acceleration

 

Nonlinear
reconstructions

K-space

Usual undersampling strategies for CS-
MRI
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vs.

Compressed Sensing MR Image 
reconstruction
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CS on the market
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Approximation Theory: Application to 
Computer Graphics

Convolution with a smoothing kernel

[Chauffert et al, Construct Approx 2017]
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Approximation Theory: Application to 
Computer Graphics
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SPARKLING
Spreading Projection Algorithm for Rapid K-space sampLING

SPARKLING: A perfect point spread function

[Lazarus et al, ISMRM 2017, 2018, 2019 and MRM 2019; Patent accepted in Jan 2019]
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[Lazarus et al, ISMRM 2017, 2018, 2019 and MRM 2019]

SPARKLING
Spreading Projection Algorithm for Rapid K-space sampLING
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Lee and Hargreaves. 2006

In-out RADIAL 
  AF=20

In-out SPIRAL 
    AF=20

In-out SPARKLING 
AF=20

REFERENCE

TA=14s TA=14s TA=14sTA=4min42s

In vivo results at 0.39mm resolution
26 shots – 11 slices

[Lazarus et al, ISMRM 2017, 2018, 2019 and MRM 2019]
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VS. VS.

Ex vivo comparison with 
other strategies

 
T2* contrast

Isotropic resolution of 0.6 mm
TA=45s

Larson et al. 2007 Lustig et al. 2008

[Lazarus et al , sub. to NMR Biomed 2019]
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IPAT 4 
TA=14min31s

SPARKLING
TA=45s

SSIM=0.86

RADIAL
TA=45s

SSIM=0.72

Poisson disk lines
TA=45s

SSIM=0.58

SPARKLING vs. other strategies 
1140 shots - AF=69



COSMIC Project: 2016-2019 CEA/DRF impulsion funding (https://cosmic.cosmostat.org)

Tools:
● PySAP: Python Sparse data Analysis Package : MR & Astronomical image reconstruction from under-sampled 

data.

Jean-Luc
Starck

PySAP developers team:

Samuel
Farrens

Antoine 
Grigis

Zaccharie
Ramzi

Hamza
Cherkaoui

https://github.com/CEA-COSMIC/pysap

Benoît
Sarthou

[Cherkaoui et al, EUSIPCO 2018; El Gueddari et al, ISBI 2018, 2019;
Ramzi et al, submitted to SPARS 2019]

Open Source MRI recon Software

Loubna
El Gueddari
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Main CS limitations

● Long reconstruction times

● Fixed sparsifying transform (e.g., wavelets, Total Variation, etc.)

● Require hyperparameter setting
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Outline

Part I: Compressed Sensing in MRI
• Standard CS acquisition
• Standard CS reconstruction
• SPARKLING

Part II: Deep learning for MR Image reconstruction
• Motivations
• A recent breakthrough
• From single to double-domain denoising
• Where to contribute?
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● MRI is an essential tool for diagnosis especially in high-resolution

● Multi-contrast weighted 

Unmet needs in MRI

Van Rooden et al. 2009.

10 mm

0.3 x 0.3 x 0.3 mm

Example: 

  Alzheimer's Disease and amyloid plaques

T1 T2 FLAIR T2*
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● MR exam protocol may last 30 – 60 min/patient

– DL reconstruction should increase the throughput of MR scanning   

● Dynamic MRI : cardiac imaging, functional brain imaging, DCE-MRI, dynamic 
MRA

– Should improve temporal resolution too

Unmet needs in MRI
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2016-18: Deep Learning Breakthrough in 
MR

Multilayer perceptron

[Kwon et al, Med Phys 2017]

Variational network

[Hammernik et al, MRM 2018]

Fully connected DNN

[Zhu et al, Nature 2018]

Fully end-to-end CNN

[Wang et al, ISBI 2016
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Different Deep Learning Approaches

Image-domain learning

Hybrid-domain learning

Domain-transform
learning

Sensor-domain learning
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Different Deep Learning Approaches

Data-driven learning

Model-based learning
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Image-Domain Learning

[Han et al, MRM 2018]

● Data-driven deep learning for fast MRI reconstruction

[Hanneberger et al, MICCAI 2015]
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Image-Domain Learning

[Han et al, MRM 2018]

● Data-driven deep learning for fast MRI reconstruction
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Image-Domain Learning

● Data-driven deep learning: Generative Adversarial Networks for CS

[Mardani et al, TMI 2019]
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GANCS Results

[Mardani et al, IEEE TMI 2019]
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Domain-transform Learning: AUTOMAP

[Zhu et al, Nature 2018]
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AUTOMAP Results (Magnitude)

[Zhu et al, Nature 2018]
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AUTOMAP Results (Phase)

[Zhu et al, Nature 2018]
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Single-Net Hybrid-Domain Learning

[Yang et al, NIPS 2016, Yang et al, IEEE PAMI 2018]

● Unroll iterative optimization algorithms: ADMM-Csnet, ISTA-net, ...
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Variational-net Extension

[Hammernik et al, MRM 2018]
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Double-Net Hybrid-Domain Learning (DN-
HDL)

[Eo et al, MRM 2018]
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Current Investigation in DN-HDL

[Adler et al, IEEE TMI 2018]

● Extension to NFFT & B0 
inhomogeneities

● Parallel Imaging

Optimization algorithm Learned version with DNN
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What Deep Learning enables?

● High quality image reconstruction: better than CS 

● After training, fast reconstruction on unseen data

● Interpretable models



● Save time for MR acquisition especially for high-resolution imaging

– SPARKLING: adaptive sampling strategy to any MR system & imaging 
contrast 

– Ongoing extensions for 4D imaging (multi-contrast 3D & 3D+time)

– Ability to perform anisotropic sampling!

● Save time for MR image reconstruction using deep learning

– Scalability of CNN for high-resolution imaging (large dimensions)

– Scalability of CNN for 5D image reconstruction in the pMRI context

– Best trade-off between the size of the training set vs the diagnosis 
precision

–

● Joint DL for fast MR Acquisition & Image reconstruction

– Optimize the acquisition/reconstruction pair in various imaging scenarios

Conclusion & Outlook
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Image-Domain Learning

[Yoon et al, neuroImage 2018]

● Data-driven deep learning for fast MRI reconstruction
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AUTOMAP results in spiral imaging

[Zhu et al, Nature 2018]
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Single-Net Hybrid-Domain Learning

[Hammernik et al, MRM 2018]

● Variational Network for parallel imaging using a single CNN



4/22/19 |  PAGE 44

Hybrid-Domain Learning

[Schlemper et al, IEEE TMI 2017]

● Model-based deep learning for fast MRI reconstruction
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Sensor domain Learning

[Akçakaya et al, MRM 2019]
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