
System Level Design and Verification Using a
Synchronous Language

Gérard Berry
Esterel Technologies

France

gerard.berry@esterel-

technologies.com

Michael Kishinevsky
Intel Corp.

Hillsboro, OR

michael.kishinevsky@intel.com

Satnam Singh
Xilinx

San Jose, CA

satnam.singh@xilinx.com

ABSTRACT
Synchronous languages such as Esterel, Lustre, Signal, and
others were originally developed for safety-critical embed-
ded software and compiled into C. They have recently been
extended to hardware with new language features and com-
pilers to RTL. Contrary to traditional HDL languages (Ver-
ilog, VHDL) and recent system-level languages (SystemC,
System Verilog), they have well defined formal semantics,
which facilitate bug avoidance using correct-by-construction
compilation and verification techniques.

The tutorial will demonstrate what the synchronous lan-
guage offers for the modeling, design, analysis and imple-
mentation of systems that comprise hardware and software.
It will be based on Esterel. Esterel models have proved to
be useful for rapid design space exploration and verification
at system level, without resorting to detailed implementa-
tion and slow bit-level event-based simulation. We show
how to model control-dominated IP blocks at a higher level
of abstraction and how to use the target C code or RTL in
conjunction with other system-level tools. Case studies in-
clude examples of design space exploration by synthesizing
equivalent hardware or software from the same Esterel de-
scription, with formal verification of safety properties such
as bus protocol conformance. We conclude with a review of
future research directions.

1. INTRODUCTION
Modern control-dominated designs implement complex

communication protocols and contain multiple interacting
finite state machines (FSMs). FSM specifications are typi-
cally represented using explicit state graphs based on case-
statements and written either in RTL-level Verilog or VHDL
for hardware implementation or in C for software imple-
mentation. Designing networks of communicating FSMs us-
ing state transition diagrams is error prone, as the designer
needs to manage lots of communication signals between the
FSMs and ensure their correct synchronization over time.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

Hierarchical description of control is not possible in Verilog
or VHDL. As a result, minor modifications in the specifi-
cation can lead to major changes in the design. For ex-
ample, waiting for three concurrent signals that can arrive
in any order instead of two requires five more states and
fourteen more transitions. This makes debugging difficult,
limits model reuse, and leads to hidden communication bugs
that might be detected very late in the design flow, or even
remain undetected. Traditional control-dominated design
productivity is relatively low.

Recently there have been significant development in the
area of system-level languages based on C++. SystemC [1]
is used for specification and modeling of systems at the RTL
and system level. It is based on providing special C++
libraries and a simulator oriented on specifying RTL and
system-level designs. SpecC [2] is an extension to C and
is targeted to the system-level design and manual refine-
ment. Both systems allow to describe software and hard-
ware components within single framework and co-simulate
them, which might be an important source of productivity
for system-level exploration. On a negative side semantics
of neither systems is formally defined (as both are based on
C++ to start with) and hence the specification is hardly
suitable to formal verification. Also there is no special ab-
straction layers for specifying control-dominated designs and
design of FSMs is still done at a pretty much the same level
of abstraction as in RTL.

Esterel [3] is a high-level formal synchronous language cre-
ated more than 15 years ago to program reactive systems at
a cycle-accurate behavioral level. It encompasses state se-
quencing, signal emission and reception, concurrency, and
preemption structures to drive the life and death of con-
trol component behaviors in a hierarchical way. The origi-
nal textual language was later complemented by the Sync-
Charts hierarchical automata graphical formalism [4] (now
called Safe State Machines or SSMs in Esterel). Textual and
graphical specifications can be freely mixed. Esterel has a
strong semantic basis that defines the behavior unambigu-
ously and is appropriate for synthesizing either hardware or
software with exactly that behavior. Esterel provides access
to formal verification and test generation systems for design
validation.

The Esterel Studio tool suite includes an Esterel compiler
that translates programs into C for simulation or software
implementation and into Verilog or VHDL RTL-logic for
hardware synthesis. It also includes tools for graphical and
textual design capture and visualization, sequential circuit

optimization, formal property verification, test generation,
and project documentation. Esterel has been used for mod-
eling, validation, and code generation in various industrial
domains (hardware, telecom, avionics, automotive etc.).

One can use Esterel to first implement or simulate a sys-
tem entirely in software, validate it, and then automatically
turn it to hardware. Such a flow has many desirable prop-
erties, including the ability to keep a single specification for
hardware and software while formally guaranteeing the same
behavioral properties of the design. Furthermore, one has a
lot of flexibility to partition the system description so that
some of it is realized in hardware and the rest is mapped to
software.

This new approach provides a promising way for designing
control systems overcoming drawbacks of the current low-
level RTL/C flows, since it has powerful design primitives,
formal mechanisms to ensure correctness, and powerful syn-
thesis algorithms to guarantee implementation quality.

2. BASICS OF ESTEREL LANGUAGE
Esterel is based on an orthogonal and hierarchical set

of sequencing, concurrency, and preemption primitives, To
demonstrate them, let us consider the following small exam-
ple:

Write to memory as soon as Addr and Data have
arrived. Wait for memory Latency before iterat-
ing. Restart behavior each Replay.

This specification can be implemented by the explicit au-
tomaton (state/transition graph) represented in Figure 1
(for conciseness, first letters of the corresponding signal
names are used to denote the signals, e.g. A stands for signal
Address). There are obvious drawbacks with this represen-
tation:

• the number of states and transitions explodes due to
concurrency of Addr and Data signals (imagine three
concurrent signals!);

• replay can occur from every state, hence repeating
transitions labeled with R;

• the write operation W is copied three times as A and D

can occur in any order;

• an explicit counter X needs to be introduced to count
down latency of the write operation.

Expressing this automaton in a hardware description lan-
guage like VHDL, Verilog, or System Verilog, requires te-
dious enumeration of all states and transitions, without any
additional level of abstraction or conciseness.

Alternatively, in HDLs, one can write a sequential netlist
for this automaton. This approach requires state encod-
ing and logic synthesis for deriving next-state and output
functions. The corresponding RTL netlist is cumbersome
to design and is clearly not a high-level model. A conven-
tional implementation of automata in C or other software
languages does not offer a higher level of abstraction.

Esterel describes the automaton in a hierarchical and
modular way — a must for the specification of larger system.
The program is as follows:

R

A/W

X:=L−1
X=0 or R

X>0/X:=X−1

A,D/W

D/W

A D

R R

L=1 or R

Figure 1: FSM for the specification

loop
abort
{ await Addr || await Data };
emit Write(funcW(?Addr,?Data));
await Latency tick

when Replay
end loop

Here, Replay is called a pure signal : at any clock tick it
can be either present (encoded as ‘1’ on the wire) or absent
(‘0’). The Addr and Data signals are called valued signals;
they have a status bit (referred to as Addr and Data, corre-
spondingly) and a value (referred to as ?Addr and ?Data).

The behavior is looped. The body of the loop contains
an “abort when Replay” statement that preempts its body
as soon as Replay occurs, thus factoring out the effect of
Replay on the whole basic behavior. The body of the abort

statement has three lines. The first line contains two con-
current await statements that wait for arrival (in any order)
of signals Addr and Data. As soon as both have arrived, the
program emits a Write signal and calls the function funcW

with the address and data values, ?Addr, ?Data. Then, the
program waits for the Latency number of clock cycles for
the completion of the write operation. All elements of the
specification being represented exactly once, no copying is
necessary unlike in state graphs. States are represented im-
plicitly within the await statements. Interaction with a data
path is done through the funcW function call that updates
values in the memory.

In Esterel, all constructs such as sequencing, concurrency,
waiting, preemption, are fully orthogonal: they can be freely
mixed at any level. For example, arbitrary large statements
or modules can be embedded within a single abort preemp-
tion statement, to define once for all the behavior of a pre-
emptive signal like Replay. The Esterel model is clearly
more abstract than the RTL one. The model is faster and
easier to write and change since things are written only once.
As a result, the specification contains fewer bugs and these
bugs can be caught earlier in the design process.

Furthermore, in the RTL implementation, Esterel often
allows for better design trade-off and reuse than RTL level

netlist or RTL FSMs due to both higher-level language con-
structs and capabilities to change state encoding.

3. THE ESTEREL V7 LANGUAGE
The classic Esterel language is called Esterel v5 [5]. Initial

experiments for large-scale system-level or hardware designs
showed that it lacked prominent features:

• the ability to describe data paths by traditional equa-
tions;

• support for bitvectors and integer encodings;

• direct support for Moore machines (Esterel v5 is
Mealy-oriented);

• full modular structure for code reuse support;

• support for flexible reset and clocking schemes.

Most of these deficiencies have been corrected in the new
release of the language, Esterel v7. The extension is fully se-
mantically sound, leaving the semantics of the original por-
tion of the language mostly unchanged. Most of the new
constructs can be semantically viewed as high-level macro
statements added to the core Esterel language.

The native Esterel v7 compiler was recently developed by
Esterel Technologies as part of Esterel Studio 5.0. We will
briefly review some features of the new language. From now
on we will refer to the Esterel v7 as simply Esterel.

An Esterel program is made up of declarative and/or im-
perative statements, which exchange information using sig-
nals. Each signal carries a presence or absence status and
can carry a value belonging to its data type. Programs are
organized by three types of named units:

• data units, which group data-related declarations;

• interfaces, which group communication signals;

• executable modules, which have an interface and a be-
havior defined by an executable statement.

Units form a hierarchical structure. A data unit can extend
another data unit by adding more components; an interface
can extend another interface by adding signals; and a mod-
ule can extend another module by adding behavior. Further-
more, data objects can be directly declared in an interface or
module, in which case the interface or module unit can also
be considered as a data unit of the same name by forget-
ting the signals and the behavior. Similarly, a module can
directly declare interface signals, and it can be considered
as an interface of the same name by forgetting the behavior.
This helps in keeping the declaration-to-statements ratio rel-
atively low. A few features of the unit definition language
are demonstrated by the example below:

interface MemReadIntf :
extends data MemData;
input ReadAddress : integer;
output value ReadValue : Type;

end interface

interface DualPortMemIntf :
port ReadPort : MemReadIntf;
port WritePort : MemWriteIntf;

end interface

The MemReadIntf interface extends the MemData data,
i.e. it imports all its components (type of objects,
memory size, etc.). The DualPortMemIntf inter-
face declares ports, which are groups of signals struc-
tured by interfaces. Here, ReadPort has two signal
fields, an input ReadPort.ReadAddress and an output
ReadPort.ReadValue. For memory control, the status of
ReadAddress acts as a read enable. The ReadValue output
signal (of generic type Type) is declared value-only, which
means that its status is always present.

The fragment below illustrates how equations can be
freely mixed with imperative definitions within the same
program text. It is extracted from a FIFO design.

{ // equation style
sustain{

ReadEmpty = Read and pre(FifoIsEmpty)
FifoIsEmpty = if (?Entries = 0) }

||
// imperative style
every DeltaEntries do

emit next ?Entries <= ?Entries
+ ?DeltaEntries;

end every
}

Two statements are executed in synchronous parallel (||).
The first statement is a set of equations to be executed at
each tick (clock cycle), as indicated by the sustain key-
word. The equations involve a sequential operator pre: for
a signal S, the expression pre(S) is initially false and then
turns true if S was present at the previous tick. In hardware
translation, pre is implemented by a flip-flop with proper
context-dependent surrounding control. The concurrent im-
perative statement every computes the next value of Size in
function of its current value and value of Delta. The expres-
sion next S refers to the next value of signal S. Hence, emit
next S corresponds to a Moore-style emission of a signal at
the next clock cycle.

Esterel supports signal arrays with indexes ranging from 0
upward as in C, and static or compile-time for loops for repli-
cations. An example below extracted from a dual-port FIFO
shows how array elements can be computed using replication
loops. Static loops are mapped by the compiler to generate

loops in VHDL, for loops in C/C++, or unfolded if the
target language does not support replications (e.g. blif logic
synthesis format).

for i < 2 dopar
sustain {

FifoEmpty[i] = if (pre(?Entries) = i)
FifoFull[i] = if (pre(?Entries) =

Size - i)
}

end for

We refer the reader to [6] for a detailed description of the
Esterel v7 language and to [7] for its earlier proposal.

4. ESTEREL FLOW
Given an Esterel specification, the compiler generates ei-

ther an RTL netlist for hardware synthesis or statically
scheduled C-code for simulation or embedding. Translation
to a netlist is syntax-directed: every statement of the lan-
guage is mapped to a logic netlist box. Esterel Studio’s
traceability features help to relate logic nets to the source

code. Because Esterel has a clean formal semantics, its cir-
cuit translation can be formally proven to be correct us-
ing a theorem prover (such a proof was indeed done in [8]).
Translation of Esterel to C-code can be done based on differ-
ent principles: internal generation of an explicit automaton
(subject to code-size explosion for large specification), print-
ing a sorted netlist into C-code (works for programs of any
size, relatively slow code), or static scheduling of the concur-
rent control-data flow graph representing an Esterel program
(fast code, works for specifications of any size). Esterel v7
currently only supports netlist-based C code.

The most interesting part of the netlist translation is a
group-hot state encoding that exploits the hierarchical pro-
gram structure to provide a good balance between 1-hot en-
coding (large state, simple logic), and dense encoding (small
state, large logic). Although a Esterel-generated FSM uses
more sequential elements than a densely encoded one, most
of our test cases show that its overall cell area is actually
smaller at equal speed after running Design Compiler.

5. A HARDWARE/SOFTWARE CASE
STUDY

5.1 A UART State Machine
In this section we present an example of a hard-

ware/software trade-off experiment based around a periph-
eral controller which can be implemented either in hardware
or software. We chose a reconfigurable fabric realized by Xil-
inxs VirtexTM-II FPGA [9] and it is on this device that we
perform the hardware/software trade-offs. We use a specific
development board manufactured by Xilinx called the Mi-
croBlaze Multimedia Development Board which contains a
Virtex-II XC2V2000 FPGA.

Software threads execute on a 32-bit soft processor called
MicroBlaze which is realized as a regular circuit on the
Virtex-II FPGA. For the purpose of this experiment we need
to choose an interface that runs at a speed which can be pro-
cessed by a software thread running on a soft processor. We
selected the RS232 interface on this board which has all its
wires (RX, TX, CTS, RTS) connected directly to the FPGA
(there is no dedicated UART chip on the board). Now we
have the choice to read and write over the RS232 serial port
either by creating a UART circuit on the FPGA fabric or
by driving and reading the RX and TX wires directly from
software.

The send and receive portions of an RS232 interface were
described graphically using Esterel’s Safe State Machine no-
tation. A simplified version of the receive sub-component is
illustrated in Figure 2. This version does not use hardware
flow control.

The receive RS232 receiver starts in a state which waits
for the RX input line to go low. This synchronous system
will be provided with a clock which over-samples the RX
input by 16 times the baud rate. When the RX input is de-
termined to be zero during one of the over-sampling periods
the system then makes a series of transitions that recognize
a character and check the parity bit. Some of these oper-
ations are specified graphically although we represent the
process of shifting in the newly read bit into a buffer using
a textual macrostate.

The simplified model for the RS232 sender is shown in
Figure 3. This state machine waits for a control signal to

Figure 2: A simplified version of the RS232 receiver.

Figure 3: A simplified version of the RS232 sender.

initiate the transfer and then proceeds to send the start bit
and the bits of the character. A textual macro-state is used
to extract a bit at a time from a temporary variable that
represents the character to be transmitted.

It is possible to hierarchically build layers on top of these
descriptions to add additional features e.g. a FIFO for the
read and send channels. Graphical and textual descriptions
can be freely mixed with the graphical descriptions being
automatically converted into their equivalent Esterel textual
equivalents. The actual RS232 interface that we use in this
tutorial includes a FIFO for reading and writing and a more
sophisticated policy for determining when the start bit has
arrived.

The send and receive portions of the UART can be com-
posed together to form a complete UART design, as shown
in Figure 4.

5.2 A Hardware Implementation
The state machine described in the previous section can

be synthesized to either hardware or software. The Esterel
simplified RS232 description shown in the previous section
was synthesized to RTL level hardware using Esterel Studio.
We generated RTL VHDL output which was then submit-
ted to the XST synthesis tool which forms part of Xilinx’s
implementation tool chain. This ultimately resulted in an
implementation netlist which is shown placed and routed on
a XC2V1000 FPGA in Figure 5.

The basic implementation uses 111 look-up tables (a look-
up table can implement any four input one output combina-
tional function) and 92 flip-flops and operates at a maximum
frequency of 125MHz on the XC2V1000 FPGA.

Figure 4: The top level RS232 UART design.

Figure 5: Hardware implementation of the UART.

5.3 A Software Implementation
The same Esterel simplified RS232 description shown be-

fore was synthesized to embedded C code using the Esterel
Studio. The generated C code was used with Xilinx’s Em-
bedded Developer Kit to make a software realization of the
UART which executes on a soft 32-bit microprocessor called
MicroBlaze. The RX input and TX output are made avail-
able to the software through a simple general purpose I/O
peripheral which allows memory mapped I/O for the RX
and TX pins. This ultimately resulted in an implementation
netlist which is shown placed and routed on a XC2V1000
FPGA in Figure 6.

This system was also tested on actual hardware and was
able to deal with serial data at up to 9600 baud in software
using the soft MicroBlaze processor clocked at 50MHz. Ex-
amples of other systems that are currently being realized on
FPGAs using Esterel include peripherals (either the entire
peripheral or just the bus interface) and hardware imple-
mentations of high speed serial protocols [10].

Figure 6: Software implementation of the UART.

It is of course possible to implement the same design di-
rectly in a conventional hardware description language like
VHDL or Verilog. However, the Esterel description allows
the behavior of a control dominated system to be expressed
at the higher level of abstraction and to efficiently synthe-
size the specification into either hardware of software. An
HDL implementation requires the designer to take care of
many details of how FSM states are represented and how
transitions occur by using unwieldy nested case statements.
Not only does the Esterel flow provide a more productive
method for specifying and implementing state machines but
the discipline it imposes on these descriptions makes it easier
to apply advanced automated verification techniques.

5.4 Co-Design
One could partition a system in Esterel such that some

components are realized in hardware and others in software.
The co-design capabilities of Esterel makes it easy to ex-
periment with different architectures to determine a good
balance of area versus performance. Communication be-
tween hardware and software can be modeled down to the
level of bus transactions using OPB arbiter models that we
have developed for Esterel. Alternatively they can be left
as abstract communications based on events which are then
fleshed out using back-end tool flows. For example, one
could generate CoWareC [11] or SystemC [1] and use the
capabilities of CoWare’s N2C to perform interface synthesis
to flesh out abstract communications in Esterel in terms of
a specific bus-based transaction.

The UART implementation shown here could easily be
implemented across hardware and software. For example,
the FIFO feature could be implemented in software for both
the send and receive channels and the raw low level serial op-
erations performed in hardware. One could design the com-
plete hardware/software system in one language and verify
the whole system including the hardware/software interac-
tion using a single methodology based on static analysis.

Figure 7: The FIFO used in the full UART design.

6. VERIFICATION
In previous work [12] we have reported successful formal

verification of formal properties of an OPB bus interfaces
designed in Esterel. This work showed that hardware cir-
cuits implementing bus-based protocols are amenable to so-
phisticated static analysis such as model-checking which are
facilitated by having a formally based design description in
Esterel. We now make the case that it is also possible to
do system-wide static analysis to prove properties about
the interaction of hardware and software. To test the co-
verification capabilities of Esterel we selected a FIFO com-
ponent that resides at the interface of hardware/software
decomposition. Indeed, this component could reside in ei-
ther hardware or software. The top level implementation of
the FIFO is shown in Figure 7. It comprises several threads
which control when data can be written in the FIFO and
read from the FIFO.

The verification methodology in Esterel is based around
the notion of synchronous observers. Rather than writing
formal properties in a special mathematical language or as
assertions in some special language one just develops more
regular state machine descriptions. These descriptions re-
ceiver the same environmental input as the system under
test and they observe the progress of the system check in-
teresting properties. One can then check to see if a property
is valid informally by simulation or formally by performing
a static analysis.

For the FIFO implementation we produced a check to en-
sure that the FIFO never returned any uninitialized values
(shown textually in Figure 8). Within 30 seconds on a 3GHz
Pentium 4 PC the Esterel Studio system was able to prove
that this FIFO implementation never returned an uninitial-
ized value. We then produced a broken version of the FIFO
and we were able to show within two seconds that the FIFO
implementation violated the property. The user could de-
bug the implementation either in Esterel through a graphical
simulator that plays a simulation trace that exposes the bug,
or through execution of the generated embedded C with an
automatically generated scenario input file or for hardware
through simulation using an automatically generated VCD

Figure 8: Initialization property for the FIFO.

Figure 9: A typical CoreConnect OPB Slave.

file.
Esterel has proved to be convenient for the specification,

implementation and verification of protocols. Figure 9 shows
a typical state machine for a slave peripheral used on IBM’s
OPB bus which is a component of the CoreConnectTM [13]
IP bus standard. This simple peripheral supports reading
and writing a value encapsulated by the peripheral. The
description is broken into two parts. The upper part of the
diagram describes the state transitions that can occur when
a bus transaction for this peripheral is initiated. The lower
part of the diagram performs some calculations to facilitate
address decoding and selection for this peripheral. This de-
scription is not just a specification of the slave’s behavior,
it can also become the implementation by using the Esterel
tools to translate it into VHDL or Verilog. We have imple-
mented several CoreConnect peripherals which have been
described in Esterel and then completely mapped to work-
ing FPGA implementations.

An important property of OPB slave peripherals is that
they should acknowledge the bus transfer within 16 cycles
(or request an extension). Using Esterel safe state machines
we were able to specify a simple synchronous observer that
checks that an OPB acknowledge signal is emitted within 16
cycles after a slave is selected by the arbiter. We were then
able to use the built-in verifier to formally prove that a given
slave always acknowledged a transfer within 16 cycles. The
verification took less than two seconds. This is a powerful
result since it shows that this peripheral can never be the
source of a bus timeout error which can cause a system to
crash.

Rather than writing individual properties of OPB slave in-

terfaces we can instead model the important aspects of the
OPB arbiter behavior in Esterel and then use this model
to help verify the behavior of OPB peripherals. This fac-
tors out all the common properties that any OPB peripheral
should possess. Such a model was produced and the verifica-
tion system was still able to prove bus time-out properties
very quickly (again within two seconds). This shows yet
another use for Esterel: to model IP blocks to facilitate ver-
ification. We could also produce an arbiter implementation
from our description but this is not required since the ar-
biter is already available as an optimized IP block in our
library.

7. CONCLUSION
We have shown how embedded software and hardware can

be described in a synchronous language which can be synthe-
sized to either embedded software or hardware. The quality
of the embedded software was known to be good from pre-
vious research work done on Esterel and the initial results
for the quality of the RTL hardware code is promising al-
though there are minor points that still need improvement.
Our experience with Esterel on a few control-dominated ex-
amples in the industrial settings demonstrated the following
benefits:

• Ease of selecting the implementation media. Two key
advantages of having a unified model for describing
hardware and software are the ability to divide up
a system description into different hardware/software
partitions to explore performance trade-offs and the
ability to analyze and verify a complete system that
comprises hardware and software.

• Correctness. Esterel generated RTL passed all re-
quired validation tests. Embedded tools for formal
property verification allows to check properties very
early in the design cycle. Embedded sequential ver-
ification tools allows us to check correctness of the
synthesis algorithms and is a foundation for checking
correctness of late manual changes.

• Abstraction. Esterel specification enables bug avoid-
ance by construction due to the use of high-level prim-
itives. The compiler takes on the burden of generating
many of the control signals, which would be explicit
in RTL. On an actual design, the Esterel specification
was 5 to 10 times smaller in code size compared to the
original VHDL. Esterel helps to manage the complex-
ity of the design by hierarchical partitioning.

• Quality . We could often achieve some area and/or de-
lay reduction for the control-dominated examples ex-
ploiting the advantages of the group-hot state encod-
ing.

This paper reports promising initial results for the later
advantage showing proofs of hardware/software systems
which would have been very difficult to perform using con-
ventional techniques. As technologies like platform FPGAs
becomes more common and more designers face system level
and embedded systems and concurrent programming chal-
lenges the utility of more powerful and abstract design and
analysis tools like Esterel will also increase. In particular,
these systems seem suited for control-based operations, pro-
tocol implementation and co-verification.

Raising the level of abstraction in the design is not coming
for free. As potential disadvantages we should mention the
following. An RTL code compiled automatically from the
higher level Esterel has less controllability (and less read-
able) than manually written RTL. It may become harder to
control timing violations or to do manual changes to RTL
(in late ECO). Esterel capabilities for describing and syn-
thesizing a data path can be further improved.

We believe that the most interesting future research and
development directions are as follows:

• Modular compilation for better scaling.

• Efficient verification supporting mixed control and
data.

• Multi-clock support.

• Support for late Engineering Change Orders (ECOs)
in silicon compilation.

• Support for flexible data and control encoding to im-
prove synthesis quality.

• Improved readability and traceability of automatically
generated RTL.

• Specific compiling techniques for fast software simula-
tion.

“Virtex-II” and “MicroBlaze” are trademarks of Xilinx Inc.

8. REFERENCES
[1] SystemC, 2002, website at http://www.systemc.org.

[2] UCI, SpecC, 2002, website at http://ics.uci.edu/ specc.

[3] G. Berry, “The Foundations of Esterel,” in Proof,
Language and Interaction: Essays in Honour of Robin
Milner, ser. Foundations of Computing Series,
G. Plotkin, C. Stirling, and M. Tofte, Eds. MIT
Press, Aug. 2000.

[4] C. André, “Representation and analysis of reactive
behaviors: A synchronous approach,” in Proc.
CESA’96, Lille, France, July 1996.

[5] G. Berry, The Esterel v5 91 Primer. Draft book,
available at http://www.esterel-technologies.com,
version 3, August 2000.

[6] Esterel Studio 5.0 reference manual, Esterel
Technologies, 2003.

[7] G. Berry and M. Kishinevsky, “Hardware Esterel
language extension proposal,” Tech. Rep., August
2000, available at
http://www.esterel-technologies.com.

[8] K. Schneider, “Embedding imperative synchronous
languages in interactive theorem provers,” in Proc.
Int. Conference Application of Concurrency in System
Design, June 2001.

[9] VirtexTM-II Platform FPGA Handbook, Xilinx Inc.,
December 2000.

[10] Xilinx, Aurora Technology Overview, 2003.

[11] CoWare, 2003, website at http://www.coware.com.

[12] S. Singh, “Design and verification of
CoreConnectTMIP using Esterel,” the 12th Advanced
Research Working Conference on Correct Hardware
Design and Verification Methods, L’Aquila, Italy, 2003.

[13] IBM, The CoreConnectTMBus Architecture, 1999.

