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Paul Caspi

The father of this work is Paul Caspi. In
the 1990’s he was consulting for Airbus,
Toulouse, flight control department. He
noticed that Airbus was using a
time-triggered but asynchronous computing
and communication infrastructure for
distributed control. A sophisticated
discipline was used for Scade programming
was used to compensate for the resulting
artifacts. Paul launched PhDs to analyze
and formalize this.

With a number of colleagues, we
subsequently discovered that the right
formalization was a new middleware that
we decided to call LTTA.
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Motivations

Motivation: model based design process

From Federated to Integrated Architectures: IMA in aeronautics

. © Jean-Bernard Itier, Airbus France
What is A380 IMA? Artist2 Workshop on Integrated Modular Avionics, Rome, Nov 2007

To Integrated
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From Federated
Architectures

LRU « black box » i @
ARTIST2 - Inegrated Moduar Avionics A380 Page 1 AIRBUS
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Motivations

Motivation: model based design process
From Federated to Integrated Architectures: AUTOSAR in automobile

Key AUTOSAR "Methodology and RTE"

O Flexible mapping of O ... enabled by standardized
software components ... run-time environment (RTE)
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Motivations

Motivation: model based design process

Model-based design processes: IMA in aeronautics

SCADE Solutions for ARINC 661 Compliant Systems | Esterel Technologies

Modular Solutions

c
S
S
©
L
=
o
<
=
1
wv
=)
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Widget Model Libraries
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UA Logic Design
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AVIONICS USER WIDGETS & SERVER
APPLICATIONS ARINC 661

Widgets &
Server
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= ot =
A fully-integrated COTS solution for the specification, development and certification of

avionics displays following the ARINC 661 standard
The SCADE Solutions for ARINC 661 Compliant Systems are a tool suite for creating and simulating
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Motivations

Motivation: model based design process
Model-based design processes: AUTOSAR in automobile
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INTEGRATED TOOL SUITE FOR DEVELOPING &
SIMULATING AUTOMOTIVE EMBEDDED SYSTEMS
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Motivations
Motivation: model based design process
Model-based design processes:

@ Models of Computation and Communication (MoCC)

o For the functions (synchronous programming, Kahn Networks. . .)
with corresponding formalisms

e For the architectures: this talk
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Motivations

Motivation: TTA

Architecture MoCCs:

e TTA (Time-Triggered Architecture) [Hermann Kopetz 1987, 1991]
A comprehensive MoCC-based architecture:
e strong synchrony
global discrete notion of time
time-based fault-tolerance
time-based scheduling (TDMA)
time-based interfaces
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Motivations

Motivation: TTA

Architecture MoCCs:

e TTA (Time-Triggered Architecture) [Hermann Kopetz 1987, 1991]
A comprehensive MoCC-based architecture:
e strong synchrony
global discrete notion of time
time-based fault-tolerance
time-based scheduling (TDMA)
time-based interfaces

@ Resistances to TTA:

e cost of synchronization
o rigidity of TDMA
e cost of re-design (adaptations & upgrades)
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Motivations

Motivation: resistances to TTA

Computers on trains for
speed control

Computers on tracks for
collision avoidance and
to avoid losing a train
(ghost train!!)

MBPC

Wired communications
for fixed computers

For computers on trains:
use wheels or wireless

Communication by
Sampling (LTTA)
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Motivations

Motivation: resistances to TTA

AFDX technology — Addressing : MAC,IP,UDP

ition 2
W o

* Avionics communications are based on multicast:
» one transmitter
» one or several receivers | . |
® Asynchrony of individual clocks
* NO reconfiguration capability in the AFDX network

@
4
ARTIST2 - Integrated Modular Avionics A380 Page 1 AIRBUS
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Motivations

Motivation: resistances to TTA

traffic
—t—

Synchronous
Rate-constrained

(RC) traffic
—~t—

Priority-based
asynchronous
Ethernet traffic

Regular traffic
’—A_\

Quote from TTTech

TTEthernet is a fault-tolerant real-time communication protocol for
safety-related systems. It integrates data flows of time-triggered,

rate-constrained, and standard Ethernet in one physical infrastructure.

The TTEthernet switches provide the means for robust partitioning
between these three traffic classes.
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Motivations

Motivations and Overall Objectives

When no TTA infrastructure can be offered by the medium itself, e.g.:
@ wide area distributed system
® wireless

e other. .. (available asynchronous infrastructure)

but it is still wanted to have a
@ coherent logical synchronous basis

@ with, preferably, controlled timing behavior, then:
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Motivations

Motivations and Overall Objectives

When no TTA infrastructure can be offered by the medium itself, e.g.:
@ wide area distributed system
® wireless

e other. .. (available asynchronous infrastructure)

but it is still wanted to have a
@ coherent logical synchronous basis

@ with, preferably, controlled timing behavior, then:

Relax TTA to LTTA
(Loosely Time-Triggered Architecture)
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From synchronous programs to 1-safe nets

9 From synchronous programs to 1-safe nets

Benveniste et al. () Loosely Time-Triggered Architectures for Distributed Control Applications 8 /38



From synchronous programs to 1-safe nets

From synchronous programs to 1-safe nets

A synchronous machine with two computers and two 1-buffers

top: a data-flow
representation of the
synchronous machine

bottom: a net form;
the subset of red places
represents the end of
each reaction;

dashed: back-pressure

Benveniste et al. ()
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From synchronous programs to 1-safe nets

From synchronous programs to 1-safe nets

A synchronous machine with two computers and two 1-buffers

— —

top: a data-flow

. 1 2
representation of the L L] J
synchronous machine B

1-buffer ||
n w1 r2 W2

bottom: a net form; (:)—>

. \d - - .
no special places are AN NS NS
distinguished; \®) N \®)
yields a net model of a < (o)~ .
1-buffer Kahn network e T
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From synchronous programs to 1-safe nets

From synchronous programs to nets

@ This shows that 1-clocked synchronous programs having no delay-free
circuit can be implemented on 1-buffered nets

@ For multi-clocked synchronous programs, tokens hold a L to indicate
absence of data;
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From synchronous programs to 1-safe nets

From synchronous programs to nets

@ This shows that 1-clocked synchronous programs having no delay-free
circuit can be implemented on 1-buffered nets

@ For multi-clocked synchronous programs, tokens hold a L to indicate
absence of data; is it possible to get rid of this signalling overhead?

@ Yes it is! Assuming tokens carry data:

o if, by only reading its present input tokens, a transition can infer which
tokens will be absent in the next firing, then this transition does not
need the 1 signaling; such a transition is called endochronous
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From synchronous programs to 1-safe nets

From synchronous programs to nets

@ This shows that 1-clocked synchronous programs having no delay-free
circuit can be implemented on 1-buffered nets

@ For multi-clocked synchronous programs, tokens hold a L to indicate
absence of data; is it possible to get rid of this signalling overhead?

@ Yes it is! Assuming tokens carry data:

o if, by only reading its present input tokens, a transition can infer which
tokens will be absent in the next firing, then this transition does not
need the 1 signaling; such a transition is called endochronous

@ If a net is such that all its transitions are endochronous, then the
1 -labeled tokens need not be circulated and the resulting net provides
a model of the asynchronous execution of the synchronous program

This is the subject of extensive research in the synchronous languages
community (Caillaud, Potop...) and also related to asynchronous circuits
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Loosely Timed-Triggered Architecture
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Loosely Timed-Triggered Architecture

Loosely Time-Triggered Architecture
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Communication by Sampling
©@ Communication medium ~ set of shared memories, 1 per variable

@ Each computer periodically samples its external world
And so does the communication medium itself
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Loosely Timed-Triggered Architecture

Loosely Time-Triggered Architecture

LA LA LA

| i

¥ |
¥ 1
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Communication by Sampling
©@ Communication medium ~ set of shared memories, 1 per variable

@ Each computer periodically samples its external world
And so does the communication medium itself

Advantages:
@ communication medium off-the-shelf
@ autonomy, no deadlock, no livelock

Results, however, in losses and duplications
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Loosely Timed-Triggered Architecture

Loosely Time-Triggered Architecture

@ Problems when

LA ] A ] [ A writing/sensing with
[ T \ non synchronized clocks:

H H Ti H H N duplications
R T
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Loosely Timed-Triggered Architecture

Loosely Time-Triggered Architecture

@ Problems when

LA A ] A writing/sensing with

. [ T | non synchronized clocks:
b
no harm so far for
H H u H T i N continuous feedback control
o ! Siebug e e
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Loosely Timed-Triggered Architecture

Loosely Time-Triggered Architecture

©) Problems when

A A ] A writing /sensing multiple
[ T 1 discrete signals:
a
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case 1 Cases 1 and 2 correspond to
2/ be two different outcomes for the
local clock of Ajy.
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Loosely Timed-Triggered Architecture

Loosely Time-Triggered Architecture

A two-level architecture:

o Low-level high-speed computing layer

o for use in continuous feedback control
e Communication by Sampling used as such; no protocol, no middleware
e robustness to artifacts ensured thanks to

@ continuity properties of physical system for control, and
@ advanced techniques of robust control design
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Loosely Time-Triggered Architecture

A two-level architecture:

o Low-level high-speed computing layer

o for use in continuous feedback control
e Communication by Sampling used as such; no protocol, no middleware
e robustness to artifacts ensured thanks to

@ continuity properties of physical system for control, and
@ advanced techniques of robust control design

o Top-level lower-speed computing layer

o for use in discrete control (protection handling, mode management)
o middleware ensuring strict preservation of semantics
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Loosely Time-Triggered Architecture

A two-level architecture:

o Low-level high-speed computing layer
o for use in continuous feedback control

e Communication by Sampling used as such; no protocol, no middleware
e robustness to artifacts ensured thanks to

@ continuity properties of physical system for control, and
@ advanced techniques of robust control design
o Top-level lower-speed computing layer

o for use in discrete control (protection handling, mode management)
o middleware ensuring strict preservation of semantics

Case of interest: all-electric aircraft

- feedback control of electric motors with a pu-sec time scale
(AFDX and ARINC technologies not fast enough)

- flight control and flight management with a m-sec time scale
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Loosely Timed-Triggered Architecture

Preservation of the semantics: the problem

A A
T @ ensuring flow equivalence

between
LTTA Design (top)

o and
Synchronous Design (bottom).

Flow equivalence ensured by a special LTTA protocol on top of
Communication by Sampling
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Loosely Timed-Triggered Architecture

Preservation of the semantics: the problem

A A
T @ ensuring flow equivalence

between
LTTA Design (top)

o and
Synchronous Design (bottom).

Flow equivalence ensured by a special LTTA protocol on top of
Communication by Sampling

Two approaches:
@ building on back-pressure and elastic circuits

@ building on time by “making events thick"”
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Back Pressure LTTA

@ Back Pressure LTTA
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Back Pressure LTTA

Back-Pressure LTTA

Principle:
@ start with a target architecture that is a 1-safe, conflict-free Petri net
(an event graph):
e nodes alternate input-reads and output-writes

e links are

o FIFO of finite size, modeled by a series of place-transitions in sequence
o together with a mirroring back-pressure virtual link with the same
amount of successive place-transitions

e this is called an elastic circuit in asynchronous hardware
e it can implement a Kahn network with bounded buffer size
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Back-Pressure LTTA
Principle:
@ start with a target architecture that is a 1-safe, conflict-free Petri net
(an event graph):
e nodes alternate input-reads and output-writes

o links are

o FIFO of finite size, modeled by a series of place-transitions in sequence
@ together with a mirroring back-pressure virtual link with the same
amount of successive place-transitions

this is called an elastic circuit in asynchronous hardware

e it can implement a Kahn network with bounded buffer size

1-buffer
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Back Pressure LTTA

Back-Pressure LTTA

top: Node as a Net Nji: directed link j — i
reads and writes alternate dashed: back-pressure

bottom: Link as a Net

1-buffer on each link (HM) % HMI

- J—i
i

T BP-EC (elastic circuit)

ri \\I,'.‘\))/ w;

Nji = l;'@ J
Wi e
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Back Pressure LTTA

Back-Pressure LTTA

top: Node as a Net
reads and writes alternate

bottom: Link as a Net
1-buffer on each link

N;

-0

ri N v ’.‘ s)) w;

Nji =

Benveniste et al. ()

1-buffer
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Back-Pressure LTTA

top: Node as a Net
reads and writes alternate

bottom: Link as a Net
1-buffer on each link

N;

-0

r’_ N v —.~ s)) Wi

Nji =

Benveniste et al. ()

1-buffer
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Back Pressure LTTA

Back-Pressure LTTA

top: Node as a Net Problem:
reads and writes alternate fail-stop of a node
bottom: Link as a Net blocks the entire net

1-buffer on each link

N;

-0

i vy ’.‘ s)) w;

Nji =

wi T-buffer
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Back Pressure LTTA

Back-Pressure LTTA

Principle:

@ start with a target architecture that is a 1-safe, conflict-free Petri net
(an event graph):
e nodes alternate input-reads and output-writes
e links are

o FIFO of finite size, modeled by a series of place-transitions in sequence
o together with a mirroring back-pressure virtual link with the same
amount of successive place-transitions

this is called an elastic circuit in asynchronous hardware

it can implement a Kahn network with bounded buffer size
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Back Pressure LTTA

Back-Pressure LTTA

Principle:
@ start with a target architecture that is a 1-safe, conflict-free Petri net
(an event graph):
e nodes alternate input-reads and output-writes

o links are

o FIFO of finite size, modeled by a series of place-transitions in sequence
o together with a mirroring back-pressure virtual link with the same
amount of successive place-transitions

e this is called an elastic circuit in asynchronous hardware

e it can implement a Kahn network with bounded buffer size

© Add a skipping mechanism
o allowing nodes to fire freely, triggered by their local clocks,

without getting blocked by tokens originating from other nodes.
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Back Pressure LTTA

Back-Pressure LTTA

low priority skipping mechanism at node i Nji: directed link j — i
triggered by the clock of node i dashed: back-pressure
sk/p,
i J—i

BP-EC (elastic circuit)

r \Y—u)) Wi
]'> (HM) ey
i J—i
N = ”: : ﬂ BP-LTTA
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Back Pressure LTTA

Back-Pressure LTTA

low priority skipping mechanism at node /
triggered by the clock of node /  this node does not block

skip;

e
6

=2

Mi _ M skip

w; \,'H)// r:
J o) ! 1-buffer
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Back Pressure LTTA

Back-Pressure LTTA

low priority skipping mechanism at node /
triggered by the clock of node i

still, the
behavior of

the whole net
remains BP-like

skip;

Mi _ M skip

\‘: } / 1-buffer
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Back Pressure LTTA

Back-Pressure LTTA

Features:

@ Under absence of failure, logical synchronous pace is provided
with no prior assumption regarding local clocks

@ Nodes are triggered by their own local clocks

= node activation is robust against fail-stop nodes
and local computing activities survive node failure
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Back Pressure LTTA

Back-Pressure LTTA

Features:

@ Under absence of failure, logical synchronous pace is provided
with no prior assumption regarding local clocks

@ Nodes are triggered by their own local clocks

= node activation is robust against fail-stop nodes
and local computing activities survive node failure

e Still, abstracting away the (lower priority) skipping mechanism yields
again the BP architecture (~ elastic circuit):

=— communication does not survive node failure

— the pace of fetching fresh data coincides with that of pure BP

Benveniste et al. () Loosely Time-Triggered Architectures for Distributed Control Applications 23 /38



Time-based LTTA

© Time-based LTTA
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Time-based LTTA

Time-based LTTA

Principle:

@ Here we ensure robustness against fail-stop nodes for both

e node activation (as in BP-LTTA)
e and communication

@ Requires prior assumptions regarding local clocks
(bounds on intervals between successive ticks)
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Time-based LTTA

Time-based LTTA: approach
M =w | :(:) (:Xi r,, Time-based, pure CbS link (top),
’ ! compared to BP-link (bottom)

Nji=w ® . Observe the lack of synchronization
S ' that results
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Time-based LTTA

Time-based LTTA: approach
M =w :(:> r,, Time-based, pure CbS link (top),
’ ’ @‘/:H compared to BP-link (bottom)

Nji=w ® . Observe the lack of synchronization
A that results

e
IO
y

Re-synchronization

Re-synchronization is by ensuring a clean alternation of writing and
reading phases throughout the entire architecture. This is achieved by:

@ slowing-down by synchronizing on Jocal physical time

@ accelerating using a token-based publication broadcast
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Time-based LTTA

Time-based LTTA: distributed protocol

publications byi E
the other nodes ! !

Benveniste et al. () Loosely Time-Triggered Architectures for Distributed Control Applications

27 / 38



Time-based LTTA

Time-based LTTA: distributed protocol

CASE 1
this node is
1% to publish

publications by i
the other nodes ! !
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Time-based LTTA

Time-based LTTA: distributed protocol

CASE 1
this node is
1% to publish

publications byi E -------- ’
the other nodes  }-------------ooo- .

- A A
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Time-based LTTA

Time-based LTTA: distributed protocol

CASE 1
this node is
1% to publish

ri

- A A

publications byi E -------- ’ |
the other nodes  }-------------ooo- .
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Time-based LTTA

Time-based LTTA: distributed protocol

CASE 1
this node is
1% to publish

ri

meanwhile
0

some
early node 0
has possibly
published (O) ( Y )
- A A

publications byi -
the other nodes  }------------ooo- .
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Time-based LTTA

Time-based LTTA: distributed protocol

CASE 1
this node is
1% to publish

Il

publications byi
the other nodes'!
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Time-based LTTA

Time-based LTTA: distributed protocol

CASE 1
this node is
1% to publish

- A A

publications byi E -------- ’ |
the other nodes  }-------------ooo- .
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Time-based LTTA

Time-based LTTA: distributed protocol

CASE 2

this node
synchronizes
on an earlier
publication

Il

publications by i
the other nodes ! !
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Time-based LTTA: distributed protocol

CASE 2

this node
synchronizes
on an earlier
publication

publications byi - -
the other nodest - -------cocooeoooo-
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Time-based LTTA

Time-based LTTA: distributed protocol

CASE 2

this node
synchronizes
on an earlier
publication

Il

publications by i
the other nodes ! !
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Time-based LTTA

Time-based LTTA: distributed protocol

cutting the i

I”I”I“””“””””r‘l“ll” [T (10 |||||||||||||||||IIIIMII|||||||||||||||||||
net here
0
publications by i +-------- -
the other nodes! }-----------cooono- ’
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Time-based LTTA

Time-based LTTA: distributed protocol

pi — 1 transitions

Assumption: Inter-tick time
of local clocks:

Tmin < /‘5;(4_1 - H;{ < Trax;
Communication delays:

Tmin < T < Tmax-

Thm: with adequate choices
of p and g the TB-LTTA net
ensures a clean alternation of
global read and write periods
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Performances and comparison

@ Performances and comparison
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Performances and comparison

Back-pressure LTTA performance

@ Inter-tick time of local clocks: Tmin < /i}'ﬁLl — /1}'( < Tax

@ Communication delays: Tmin < 7 < Tmax-

Performance of Back-Pressure LTTA
(using max/+)
Elastic circuit (no periodic clock):

Ay = s
N 2 maX( Tmax ’Tmax)
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Performances and comparison

Back-pressure LTTA performance

@ Inter-tick time of local clocks: Tmin < /<;L+1 — K}L < Tax

@ Communication delays: Tmin < 7 < Tmax-

Performance of Back-Pressure LTTA
(using max/+)

Elastic circuit (no periodic clock):

Tmax ¢ Tmax+ Tmax 1

A/\~f = 2 maX( Tmaxﬂ'max)

With clock and skipping mechanism:
Tmax — Tmax and Tmax ¢ Tmax + Tmax

1
AN - 2( Tmax+7max)
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Performances and comparison

Time-based LTTA performance

pi — 1 transitions

Correctness of time-based LTTA

2, T,
max max
p > Tmlﬂ Tmlﬂ

q > Tma;_ -Tmln + max + p( max __ 1)

min

Performance of time-based LTTA

_ 1
AMm = (PrtGx) Trnax
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These conditions on p, g ensure [AZM =L:

Worst case throughput (p, and g, optimal) :
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Performances and comparison

Comparison regarding throughput

@ BP-LTTA: lower bound for throughput is

1

AN =
N 2(Tmax + 7'max)

o TB-LTTA: when delay and jitter small relative to nominal period,
Px = gx = 2 and the lower bound for the throughput is

1

@ TB-LTTA for distant communications or when the clocks are precise,
i.€., Tmax > Tmax = Tmin, We have p, = ZTT':j;,q* =1 and the lower
bound for the throughput becomes

)\M%)\N
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Extensions

@ Extensions
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Extensions

Extensions

@ So far communications have a 1-delay: W = I:L—’@—’H

wi v

This can be relaxed: zero-delay communications are allowed,
assuming that no zero-delay circuit exists (see paper)
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Extensions

Extensions

@ So far communications have a 1-delay: W = I:L—“@—’H
w;j \7"“»)/ ri

This can be relaxed: zero-delay communications are allowed,
assuming that no zero-delay circuit exists (see paper)

@ Back-pressure and time-based LTTA can be blended (see paper)

@ For time-based LTTA we required broadcast of publication events
We conjecture that this can be relaxed (but not simply removed)
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© Conclusion
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Conclusion

Conclusion

@ Relaxing TTA to LTTA, a software based middleware
e providing a logical synchronous time basis
e with time bounds under additional assumptions

@ Back-Pressure LTTA & Time-Based LTTA

e similar performances w.r.t. throughput

o BP-LTTA more flexible

e TB-LTTA more robust against node failures

e blending the two is easy and natural (see paper)

@ The following services can be borrowed from TTA with no changes:

e fault tolerance
e scheduling
e interfacing
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Conclusion

However. ..

@ Notice from Hermann Kopetz: low cost precise clocks now exist, for
synchronization-free distributed control in the range of the usec

- does this imply that unsynchronized, precise clock based triggering is
enough to ensure full TTA?
- what about the various OS artifacts?
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However. ..

@ Notice from Hermann Kopetz: low cost precise clocks now exist, for
synchronization-free distributed control in the range of the usec

- does this imply that unsynchronized, precise clock based triggering is
enough to ensure full TTA?
- what about the various OS artifacts?

@ Variations about the assumptions for TB-LTTA:

o studies of real-life constraints for distributed real-time architectures are
needed to avoid considering irrelevant assumptions

o It is very welcome that Guillaume Baudart, Timothy Bourke, and
Marc Pouzet, reconsider this theory seriously and develop a simulation
platform (see Synchron'13 at Dagstuhl)
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Conclusion

ConclusionConcIusion

o Formal executable models of computing
infrastructures are useful for virtual modeling

e Mathematical models are more essential

o support math reasoning
e correct-by-construction deployment
o with no need for extensive virtual model exploration

e MoCCs as important as MOOCs albeit less buzzy
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