A PROOF OF HALL'S THEOREM

JEAN-CHRISTOPHE YOCCOZ

Theorem 0.1. Let $K_1, K_2 \subset \mathbb{R}$ be Cantor sets such that $\tau(K_1) \tau(K_2) > 1$. Then at least one of the following properties hold

- (1) K_1 is contained in a connected component of $\mathbb{R} \setminus K_2$;
- (2) K_2 is contained in a connected component of $\mathbb{R} \setminus K_1$;
- (3) $K_1 \cap K_2 \neq \emptyset$.

Proof. We assume that none of the properties in the theorem is satisfied and obtain a contradiction. We choose, for i = 1, 2, trivializations $h_i : \mathcal{A}^{\mathbb{Z}_+} \to K_i$ such that $\tau(K_1, h_1) \tau(K_2, h_2) > 1$.

Two non-trivial compact intervals $J_1, J_2 \subset \mathbb{R}$ are said to be *entangled* if J_1, J_2 intersect but one has neither $J_1 \subset J_2$ nor $J_2 \subset J_1$. Writing $J_i = [a_i, b_i]$, it means that either $a_1 < a_2 \leq b_1 < b_2$ or $a_2 < a_1 \leq b_2 < b_1$.

As none of the first two properties in the theorem is satisfied, the intervals $J(h_1, \emptyset)$ and $J(h_2, \emptyset)$ intersect. We may assume that $|J(h_2, \emptyset)| \leq |J(h_1, \emptyset)|$. We first show

Lemma 0.2. There exists a finite word Θ on the alphabet A such that the intervals $J(h_2, \emptyset)$, $J(h_1, \Theta)$ are entangled.

Proof. Indeed, if $J(h_1, \emptyset)$ and $J(h_2, \emptyset)$ are entangled, we take $\Theta = \emptyset$. If not, we have $J(h_2, \emptyset) \subset J(h_1, \emptyset)$. We cannot have $J(h_2, \emptyset) \subset G(h_1, \emptyset)$ because K_2 is not contained in a connected component of $\mathbb{R} \setminus K_1$. Therefore there exists $\theta_1 \in \mathcal{A}$ such that $J(h_2, \emptyset)$ intersects $J(h_1, \theta_1)$. If $J(h_2, \emptyset)$, $J(h_1, \theta_1)$ are not entangled, we must have $J(h_2, \emptyset) \subset J(h_1, \theta_1)$: indeed the reverse inclusion $J(h_2, \emptyset) \supset J(h_1, \theta_1)$ is not possible because it would imply that $J(h_2, \emptyset)$ and $J(h_1, \theta_1)$ have a common endpoint, contradicting $K_1 \cap K_2 = \emptyset$. From $J(h_2, \emptyset) \subset J(h_1, \theta_1)$, we obtain by the same argument that there exists $\theta_2 \in \mathcal{A}$ such that either $J(h_2, \emptyset)$ and $J(h_1, \theta_1 \theta_2)$ are entangled or $J(h_2, \emptyset) \subset J(h_1, \theta_1 \theta_2)$. As $|J(h_1, \Theta)|$ converges to 0 as $|\Theta| \to \infty$, the process cannot go home indefinitely and we obtain the conclusion of the lemma

The lemma gives the starting point of an induction. The induction step is given by the

Lemma 0.3. Let Θ_1, Θ_2 be finite words such that $J(h_1, \Theta_1)$ and $J(h_2, \Theta_2)$ are entangled. Then there exist words Θ'_1, Θ'_2 such that

- (1) For i = 1, 2, Θ_i is an initial word of Θ'_i with $\Theta'_i = \Theta_i$ or $|\Theta'_i| = |\Theta_i| + 1$. Moreover, there exists $i \in \{1, 2\}$ such that $|\Theta'_i| = |\Theta_i| + 1$.
- (2) $J(h_1, \Theta'_1)$ and $J(h_2, \Theta'_2)$ are entangled.

Proof. One may assume that $h_1(\Theta_1 \overline{0}) < h_2(\Theta_2 \overline{0}) \leq h_1(\Theta_1 \overline{1}) < h_2(\Theta_2 \overline{1})$. One must actually have $h_2(\Theta_2 \overline{0}) < h_1(\Theta_1 \overline{1})$ as $K_1 \cap K_2 = \emptyset$.

If $h_1(\Theta_1 1 \overline{0}) < h_2(\Theta_2 \overline{0})$, the words $\Theta'_1 := \Theta_1 1$ and $\Theta'_2 := \Theta_2$ satisfy the conditions of the lemma. The equality $h_1(\Theta_1 1 \overline{0}) = h_2(\Theta_2 \overline{0})$ is impossible because $K_1 \cap K_2 = \emptyset$.

JEAN-CHRISTOPHE YOCCOZ

Similarly, if $h_1(\Theta_1 \overline{1}) < h_2(\Theta_2 0 \overline{1})$, the words $\Theta'_1 := \Theta_1$ et $\Theta'_2 := \Theta_2 0$ satisfy the conditions of the lemma. The equality $h_1(\Theta_1 \overline{1}) = h_2(\Theta_2 0 \overline{1})$ is impossible because $K_1 \cap K_2 = \emptyset$.

In the remaining case, one has $h_1(\Theta_1 1 \overline{0}) > h_2(\Theta_2 \overline{0})$ and $h_1(\Theta_1 \overline{1}) > h_2(\Theta_2 0 \overline{1})$. If $h_1(\Theta_1 1 \overline{0}) < h_2(\Theta_2 0 \overline{1})$, the words $\Theta'_1 := \Theta_1 1$, $\Theta'_2 := \Theta_2 0$ satisfy the conditions of the lemma. The equality $h_1(\Theta_1 1 \overline{0}) = h_2(\Theta_2 0 \overline{1})$ is impossible because $K_1 \cap K_2 = \emptyset$. Finally, the case $h_1(\Theta_1 1 \overline{0}) > h_2(\Theta_2 0 \overline{1})$ subdivides as follows

- If $h_2(\Theta_2 \, 1 \, \overline{0}) < h_1(\Theta_1 \, \overline{1})$, one takes $\Theta'_1 := \Theta_1, \Theta'_2 := \Theta_2 \, 1$.
- Si $h_1(\Theta_1 0 \bar{1}) > h_2(\Theta_2 \bar{0})$ one takes $\Theta'_1 := \Theta_1 0, \Theta'_2 := \Theta_2$
- As $K_1 \cap K_2 = \emptyset$ the equalities $h_2(\Theta_2 \ 1 \ \overline{0}) = h_1(\Theta_1 \ \overline{1})$ and $h_1(\Theta_1 \ 0 \ \overline{1}) > h_2(\Theta_2 \ \overline{0})$ are impossible.
- If one had h₂(Θ₂10̄) > h₁(Θ₁1̄) and h₁(Θ₁01̄) < h₂(Θ₂0̄), one would have J(h₁, Θ₁1) ⊂ G(h₂, Θ₂) and J(h₂, Θ₂0) ⊂ G(h₁, Θ₁). But this is not compatible with τ(K₁, h₁, Θ₁) τ(K₂, h₂, Θ₂) > 1.

From the two lemmas, one get two sequence of words $(\Theta_1(n))_{n \ge 0}$, $(\Theta_2(n))_{n \ge 0}$ with the following properties:

- for all i = 1, 2 and $0 \leq m \leq n, \Theta_i(m)$ is an initial word of $\Theta_i(n)$;
- for all $n \ge 0$, one has $|\Theta_1(n)| + |\Theta_2(n)| \ge n$;
- for all $n \ge 0$, $J(h_1, \Theta_1(n))$ and $J(h_2, \Theta_2(n))$ are entangled.

The second property implies that $\lim_{n\to\infty} \inf(|J(h_1, \Theta_1(n))|, |J(h_2, \Theta_2(n))|) = 0$. The third property implies that $J(h_1, \Theta_1(n)) \cap J(h_2, \Theta_2(n)) \neq \emptyset$. This contradicts the assumption that $K_1 \cap K_2 = \emptyset$.