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LECTURE 2

FROM QUBITS 
to 

SPIN NETS - 1



BELOW: The hierarchical 
structure of ‘glassy states’ 
in a disordered solid.

RIGHT: Typical 
structure of a 

completely 
amorphous

solid. 

The surface of a lump of graphite, with its 
layered structure visible. Interstellar grains 
and dust look similar.

DIFFERENT KINDS of NETWORK in NATURE
REGULAR SOLID ARRAYS:  Nature is full of ordered solid 
structures (some of which played a role in the formation of early 
biomolecules). Even apparently amorphous solids are usually 
polycrystalline. The unit cell of these crystals can of course be 
very complex – molecular crystals are rather common. Of special 
interest to us will be ordered structures involving ‘spin molecules’,
which are candidates for quantum information processing systems

‘Whisker’ Epsomite crystals

Crystalline array 
of Fe-8 molecules 

(basic unit shown at top)

Even when there is no 
obvious spatial order in 
the system, there may be 
‘hidden order’, encoded 
in some way in the 
structure.  This happens 
in disordered spin glasses 
& in spatially disordered 
systems – it has been 
described in theories 
of ‘ultrametric geometry’

R Rammal, G Toulouse, 
M Virasoro, Rev Mod Phys 
58, 765 (1986)



NETWORK STRUCTURE OF the BIOSPHERE

Noble

Selfish Gene
Templates
Info/causal flow
# of possibilities

ABOVE: Small part of a “disease network”

BELOW: various aspects 
of the Circadian network

Autocatalytic 
network

Map of a gene-protein network

An alien intelligence passing the earth is far more 
likely to notice the incredible array of interacting 
information & control cycles and loops (extending 
from global to nanoscopic in scale), than it is to 
notice individual species. It will notice the role here 

(as elsewhere in the universe) 
of autocatalytic nets in creating 

& evolving this structure. 

These networks are powered 
by solar & geothermal energy.
Only one of them (operating out of germ cells) involves the 
“central dogma” of information flow – all others involve flow &  
control in multiple directions (ie., a “Lamarckian” structure). 
Quantum interference & entanglement are largely absent.  

There is extensive 
‘duality’ between 
‘nodes’ & ‘links’

M Hordijk, BioSci 63, 877 (2013)
D Penny, Biology Direct 9, 26 (2014)
PG Higgs, N Lehman, Nature Rev 
Genetics     doi:10.1038/nrg3841 



QUANTUM COHERENCE & RELAXATION in BIOLOGICAL NETWORKS

A key question  - of great current interest – is the role of large-scale quantum 
superpositions and entanglement in biological processes.  

E Collini et al., 
Nature 463, 644 (2010)

Arabidopsis Thaliana
cryptochrome-1

EXAMPLE 1:  EPR-style entanglement between 2 separate 
spins in cryptochrome molecules (avian navigation); the 

Hamiltonian is:  

EXAMPLE 2: Coherent motion of excitons delocalized 
amongst chromophores in Light Harvesting molecules, 

with Hamiltonian:  



NETWORKS OF QUBITS

FAR LEFT: AGN 
megamaser in NGC 

4258: MIDDLE: Methanol maser in molecular 
cloud;  RIGHT: earth-based green laser 

BELOW: d-wave Q annealing 
chip; & vision of Q internet

ABOVE: LiHoF, 
unit cell

BELOW: superconducting and Si:P qubits

ABOVE: Interactions in 40Ca+  ion spin chain

Interacting qubit arrays exist 
naturally, in biological systems, 
in deep space masers (molecular 
clouds and AGNs), & elsewhere. 

The most common current use 
of them is in industrial lasers & 
optical telecommunications.  

Intense interest currently focusses on making 
programmable qubit arrays. Popular candidates 
include spins in ion traps, spins in solid state 
insulators or semiconductors, & superconducting 
SQUID-based arrays. All of these have problems 

with environmental decoherence

There already exists 
a large (1024-qubit) 
SQUID-based array 
used for quantum 
annealing/optimization 
(the d-wave system). 



QUANTUM INFO & QUANTUM WALKS

AP Hines, PCE Stamp, Phys Rev A75, 062321 (2007)

Graphs for quantum walks

ABOVE: Mapping between 3d ‘hypercube’ 
Quantum Walk & 3-qubit system

Qubit networks can be mapped onto “quantum 
walks” (the latter are more general however).  
Thus any gate quantum computer can be 
represented more simply as a quantum walk. 

BELOW: typical gate structure in a Q Computer

The quantum walks are in information space, between nodes representing states in 
Hilbert space.  The generic Hamiltonian is

where the node energy and hopping 
matrix elements are in general 
time-dependent.

Decoherence (the key problem in 
Q computing) is not yet in this 
Hamiltonian; we need a quantum 
environment for this.  



DYNAMICS
of a 

SINGLE QUBIT

Here we go over the dynamics of a single qubit coupled 
to a bath. We first look at some elementary results, and 
then review the analytic results that are known for the 
‘spin-boson’ and ‘central spin’ models

AJ Leggett et al, Rev Mod Phys 59, 1 (1987)                       spin-boson model
NV Prokof’ev, PCE Stamp Rep Prog Phys 63, 69 (2000)      central spin model



DYNAMICS of a SINGLE QUBIT – ELEMENTARY CONSIDERATIONS

The problem of a 2-level system (ie., “qubit”)oupled to an environment is one of 
the most widely discussed in all of physics. One calculates, using some scheme, 
the time-dependence of the qubit density matrix, given some initial state.

Consider, eg., the problem of a qubit with Hamiltonian

and put  εο = 0 (pure transverse field only); and then let the initial state be 
“up” (oriented along z). Then we expect the density matrix to behave like  

If the decays are exponential in time, then we introduce timescales T1 and T2
(longitudinal & transverse relaxation times, otherwise known as energy relaxation 
and phase relaxation times; the phase relaxation time is also called the 
“decoherence time”). 

The phenomenology of this is 
well known (particularly in 
quantum optics) – see left.

The problem with the standard picture is that it is only valid if:
(i) the bath only weakly perturbs the qubit and/or

(ii) there are no memory/feedback effects from the bath



INTERLUDE: The FREE QUBIT
The free qubit has Hamiltonian

ie., we have a spin in a field oriented so that

τspin

From elementary QM we have a qubit propagator 

and we also have (path integral)

(Schrodinger)

SIMPLE TRANSVERSE CASE:  Here we have  & the Schrodinger eqtn gives

ie., we have and 

To derive this using a path integral, note that the infinitesimal action associated with 
a qubit flip at time t = tj is 

Adding all the flips, we get, for an even number of flips:

and for an odd number of flips we get:



GENERAL CASE:  From the Schrodinger eqtn we have, for example

In a path integral treatment,  a longitudinal field gives a contribution                               
to the action. We then have    

where 

by summing over the same paths as before.  Laplace 
transforming these convolutions, ie, writing    

we get with               given as 
above by inverse transform

DENSITY MATRIX – FULL DYNAMICS: We now sum over 
pairs of paths, to get the propagator for the free density 
matrix:  

Ex: Paths for Consider, eg., the “return probability” for the spin to start & 
finish in the “up” state; for the pure transverse field this is: 



QUBIT COUPLED to a BATH

Now we have to include the ‘influence functional’ weighting factor, ie., we write

so that, eg., we have

However, this works out very differently for oscillator and spin baths:

OSCILLATOR BATHS:  we define variables and

Then

where
Decoherence functional

SPIN BATHS:  we can write as above – but it turns out to be better to write the 
results for the final density matrix in the quite remarkable form: 

Everything then depends on the range 
in time of the decoherence functional 

with averages acting on a FREE qubit form, with renormalized parameters (see later)

3 averages Free qubit density matrix



Dynamics of SPIN-BOSON MODEL

COUPLING to PHOTONS or PHONONS:   Here the coupling is infra-red weak; the 
decoherence functional is strongly local in time, and we get rather simple 

results. Thus, eg., we have, for arbitrarily strong coupling 

with renormalized parameters:

Thus the simple results used in the literature are justified. 

OHMIC COUPLING:  This case describes coupling to, eg., electrons, or to 
low-dimensionality phonons or magnons.  For the 
transverse field case we have a relaxation rate 

At T=0 all coherent oscillations cease when the 
dimensionless coupling α > ½ ; and when α > 1 
the qubit localizes, ie., its dynamics is completely 
frozen (a freezing which is alleviated at finite T). 
The phase diagram is shown at left. 



DYNAMICS of CENTRAL SPIN MODEL

As noted above, the result here can be written in the form

where the function                                     has the same form as the bare density 
matrix, but with renormalized parameters. Thus, eg., the ‘return probability’ 
renormalized bare density matrix element is  

where                                                     , where                                           , and where 
the averages are as follows: 

Topological phase average:  There is a pure phase decoherence, summing over 
winding numbers of the spin bath phase:

Precessional phase average:  By far the most important decoherence mechanism 
comes from the precession of the bath spins in the field of the 
central qubit.

Each time the qubit flips, the field on each bath spin jumps 
Between 2 possible values. Each bath spin then undergoes a 
succession of precessions that are conditional on the path of 
the central qubit.  This is just another way of saying that 
each bath spin progressively entangles with the central qubit.
The average is 

Neither of these 2 mechanisms 
involves dissipation/energy 
exchange – only decoherence



Degeneracy blocking/energy averaging:  The coupling of a central qubit to a bath 
of N different 2-level bath 
degrees of freedom leads 
to a large spread in the 
energy levels of the bath.
A key concept here is the

“M-th polarization group”, 
consisting of all bath states 
with polarization     

When the frequency scale of qubit 
dynamics is very different from the bath spin 
energy scale, the bath moves quite slowly between 
different polarization groups. The qubit finds it hard to tunnel when M is large 
(it is far from resonance); hence the strong renormalization of the matrix element.

In any case, we need to average over 
all these states; this gives an average of form:  

The net result of all this leads to a wide variety of 
possible behaviours. Many of them are rather 
unconventional, when the coupling to the spin bath 
is not weak.  A typical example is shown at left –
the absorption spectrum is very far from being a 
Lorentzian peak. 



REAL WORLD PROBLEM #2

QUANTUM DYNAMICS 
of a 

SOLID-STATE QUBIT



Fe8 S = 10

QUANTUM DYNAMICS of a single Fe-8 MOLECULE

The core of this molecule is a cluster of 8 Fe ions, of varying 
ionicities. This core is surrounded by organic ligands. 

Superexchange interactions between the Fe spins create a 
‘giant spin’ S = 10, with effective Hamiltonian:

The values of the constants are:
One way to look at this -

as tunneling between the 
eigenstates of the  -DSz

2

longitudinal term – such 
transitions are shown below

Feynman Paths on the spin sphere for
a biaxial potential. Application of a 

field pulls the paths towards the field

Another fruitful way to look at it is using a path integral 
representation. The spin moves 
in a potential on the Bloch 
sphere, with 2 potential wells 
at the poles, and 2 “hills” along 
the x-axis. There are thus TWO 
tunneling paths – we have an 
“Aharonov-Bohm effect in spin 
space”.  

Adding an external field alters 
this potential, and it alters the 
tunneling paths. If the field is 
along the x-axis, it simply reduces the height of the hill in the 
direction of the field (and increases the antipodal hill height).

The phase interference between the 2 paths is determined 
by the enclosed Berry-Haldane phase.



In the Low-T Quantum regime, we have 
the effective Hamiltonian  (T < 0.36 K):

with longitudinal bias

LOW-ENERGY EFFECTIVE HAMILTONIAN

The transverse tunneling term is an extremely 
non-linear function of the applied transverse field: 
both its magnitude and direction (see left).  
We label the eigenstates of the longitudinal part 

of this effective Hamiltonian as 
With no longitudinal field, the eigenstates are:

The effective 
g-factor of this qubit 
is highly anisotropic.

We thus have an
effective qubit 
whose parameters 
can be varied over
a very wide range
of energies. 

We can address such a qubit 
using microwave fields



DECOHERENCE IN Fe-8 SYSTEM Hyperfine couplings of 
all 213 nuclear spins 

are well known. 
One can modify 
the spin bath 

decoherence rate 
using selective 
isotopic substitution 

(A) Nuclear Spin Bath

Nuclear spin decoherence rate

where

QUANTUM COHERENCE REGIME:  here quantitative predictions were 
made long before any experiments were done.

There is a very 
strong dependence 
on transverse field 

The spin bath is made up of different
nuclear spins, with a large variety of 
hyperfine couplings to Fe, Br, N, O, C, 
& H species. The effective Hamiltonian 
can be written

where the couplings are derived from the
original hyperfine couplings.   

For this system the decoherence rate actually 
reduces to a rather simple result, viz., 

The dimensionless rate is shown at right for 
different isotopic concentrations



(b) Phonon Bath
Phonon spectrum and spin-phonon couplings are known. The phonon decoherence 
rate is:

where the matrix element is

In low fields, the nuclear spins bath 
completely blocks the qubit dynamics. 
However, at high fields, the system can 
be in a coherence window, in which the 
qubit dynamics is too fast for nuclear 
spins to follow, but still much slower 
than the phonons.

This frequency window we call the 
coherence window- note that typically

Stamp, P.C.E., Tupitsyn, I.S.,   
Phys Rev B69,  014401 (2004)

A Morello+al,  PRL 97, 207206 (2006)

S Takahashi + al, Nature 476, 76 (2011)

We return to this coherence window 
again later – it is important for quantum 
computation
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